Introduction to CMOS VLSI Design

Stick Diagrams: Euler Paths

Peter Kogge
University of Notre Dame
Fall 2015, 2018

Based on material from
Prof. Jay Brockman, Joseph Nahas, University of Notre Dame
Prof. David Harris, Harvey Mudd College
http://www.cmosvlsi.com/coursematerials.html

Standard Cell Layout

- **V_{DD} Bus**: Bus connects to neighboring cells
- **n well**: Well connects to neighboring cells
- **pmos transistors**: Well connects to neighboring cells
- **nmos transistors**: Well connects to neighboring cells
- **V_{SS} Bus**: Bus connects to neighboring cells
- **Internal Gate Wiring**
- **And Gate I/O contacts**

Audience Question: Why is “connecting to neighbors” a good thing?
Complex Circuit Layouts

\[C(A+B) + AB \]

- Single diffusion runs
- Multiple Diffusion runs

4-Input NAND Gate “Sticks” Layout

Complementary transistor pairs share common gate connection.

Step 1: order gate wires on poly

Step 2: interconnect

If pmos are 8/2, what are the nmos transistors?
We start off with:
- diffusion as one row, no breaks!
- Poly runs vertically

Each transistor must “touch” electrically ones next to it

Question:
- How can we order the relationship between poly and input
- So that “touching” matches the desired transistor diagram
- Metal may optionally be used

Approach:
- Start with some transistor & “trace” path thru rest of that type
- May require trial and error, and/or rearrangement

Finding Gate Ordering: Euler Paths
- See if you can “trace” transistor gates in same order, crossing each gate once, for N and P networks independently
 - Where “tracing” means path from source/drain of one to source/drain of next
 - Without “jumping” connections
- ABCD works here
A More Complex Example

- See if you can “trace” transistor gates in same order, crossing each gate once, for N and P networks independently
 - Where “tracing” means a path from source/drain of one to source/drain of next
 - Without “jumping”
 - ordering CBDAE works for N, not P
 - ordering CBDEA works for P, not N
 - ordering BCADE works for both!

A More Complex Example

- Trace interconnected gates in SAME order, crossing each gate once, for N,P networks
 - ordering CBDAE works for N, not P
 - ordering CBDEA works for P, not N
 - ordering BCADE works for both!
Sticks Layout

A (B+C) + DE

Wiring Tracks and Spacing and Area Estimation
Review: Wiring Tracks

- A wiring track is the space required for a wire
 - 4\(\lambda \) width, 4\(\lambda \) spacing from neighbor = 8\(\lambda \) pitch
- Transistors also consume one wiring track (WHY?)

Review: Well spacing

- Wells must surround transistors by 6\(\lambda \)
 - Implies minimum of 12\(\lambda \) between opposite transistor flavors
 - Leaves room for one wire track “for free”
First Cut Area Estimation

- Estimate area by counting required metal wiring tracks
 - Multiply by 8 to express in λ
 - Where does the “8” come from?

Example: NAND3

- Horizontal n-active and p-active strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND/V_{SS} rail at bottom
- 32λ by 40λ
Example: O3AI

- Sketch a stick diagram for O3AI and estimate area

\[Y = (A + B + C)D \]
Example: O3AI

- Sketch a stick diagram for O3AI and estimate area

\[Y = (A + B + C)D \]

Another Example Question 1.17

- Consider \(F = \overline{(A+B)(C+D)} \)
 - Sketch transistors
 - Sketch stick diagram
 - Estimate area
Typical Layout Densities (Table 1.10)

<table>
<thead>
<tr>
<th>Element</th>
<th>Area (in λ^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Logic</td>
<td>1000-1500/transistor</td>
</tr>
<tr>
<td>Datapath</td>
<td>250-750/transistor</td>
</tr>
<tr>
<td>SRAM</td>
<td>1000/bit</td>
</tr>
<tr>
<td>DRAM</td>
<td>100/bit</td>
</tr>
<tr>
<td>ROM</td>
<td>100/bit</td>
</tr>
</tbody>
</table>