Exam 2 Topics: You should be able to:

- From the intro to FET operation (W&H Chap. 2)
 - (2.1) MOS voltages: V_{gs}, V_{ds}, V_{t}, V_{sat}, I_{ds}, I_{sat} and where measured in pMOS vs nMOS circuits
 - (2.2) Use the long channel model to compute the IV curves for a transistor
 - (2.3.1) MOS capacitance and resistance and how they change with changes to W, L, tox
 - Identify the different regions (cutoff, linear, and saturation) of a transistor’s IV curves, and what that means in terms of current flow in the channel
 - Compute β from either physical parameters or I-V curves
 - Compute C_{ox} from the process characteristics
 - Find, either graphically or thru the model, V_{sat}, I_{sat}
 - Understand the differences in characteristics between an N and P type (esp. mobility and width) and how that affects their IV curves.
 - Computing V_{gs} in real circuits where the transistor’s source is not ground
 - Load lines: be able to find voltages and currents in simple circuits
 - Transistor + resistor
 - 2 transistors (same type) in series
 - Inverter (2 transistors of different types)
 - (2.4) Real World effects:
 - Velocity saturation
 - Channel Length Modulation, including computing λ
 - Body Effect

- Memory Array Structures: W&H 12.1-12.4, 12.6-12.7
 - What are the different kinds of memory: read-only/read-write/read-mostly, volatile/non-volatile, random-access/block-oriented/content-addressable
 - What are the major logic blocks in an array structure: row decoder, array, sense amps, column decoder
 - Implementing a row decoder
 - What are major wires thru an array and how do they interact with a bit cell: word lines, bit-columns
 - Different cell types: ROM, DRAM, SRAM, including transistor diagrams.
 - Programming a ROM (dot diagram)

- Delay: Chap. 4.1-4.3, 4.4.1-4.4.3
 - (141) Definitions of delay
 - (147) Identifying diffusion capacitance in a circuit
 - (146) Relationship of R and C values with transistor widths
 - (147) Drawing equivalent RC circuits for rise and fall times
 - (152) Definition of “Fan out of h”
 - (154) Determining Effective Resistance
 - (150) Drawing and using Elmore model to compute delay estimate
 - Determining combination of input transitions that maximize/minimize a logic gate’s delay