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Slightly better improvements at low TDP, but still only 2X to 3X…
2

Greater speedups for highly parallelizable 
benchmarks…

How does technology scaling impact m/c scaling?

Robert Perricone, X. Sharon Hu, Joseph Nahas, and Michael Niemier, “Can Beyond-CMOS Devices Illuminate Dark Silicon?” to appear in Communications of the ACM, 2018.

Low voltage CMOS 
also competitive

CMOS 
HP 2018

Li, et al., IEDM 19.2.1, 2016
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Figure 7: (a) CGD versus the gate voltage (VG) at different drain voltages (VDS) for Thin-TFETs with various undercut 
lengths and pin-TFETs with various underlap lengths; �B	�SCHEMATIC�OF�A�COMPLEMENTARY�INVERTER�BASED�ON�4&%4S���C	�
TIMEDEPENDENT�OUTPUT�VOLTAGE�OF�THE�4HIN4&%4�INVERTER�AND�THE�PIN4&%4�INVERTER���

 
Figure 5: Experiments. (a) ID–VDS curves of the 73E��3N3E��4HIN4&%4� (b) ID–VG curves of the measured WSe2 
parasitic MOSFET, the WSe2/SnSe2 Thin-TFET (TFET + MOSFET), and the intrinsic WSe2/SnSe2 TFET, the insets 
show the optical image of the device and the equivalent circuit with the parasitic MOSFET; (c) the corresponding SS 
curves for the parasitic MOSFET, the WSe2/SnSe2 Thin-TFET (TFET + MOSFET), and the intrinsic TFET. �
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Semiconductor Research Corporation, “nanoelectronic COomputing REsearch (nCORE),” https://www.src.org/compete/ncore/ (2017) 3

"NRI research has explored a broad spectrum of beyond-CMOS 
devices for a ’new logic switch’ to replace the current 
CMOS-based transistor ... a ‘better switch’ has not been 
found. Comprehensive benchmarking of beyond-CMOS devices 
... has revealed little or no advantage of these devices 
over CMOS for conventional Boolean logic and the von 
Neumann architecture." 

”some devices demonstrate unique characteristics suitable 
for novel architectures or computing paradigms, e.g., non-
volatility in logic devices, reconfigurablity, [and/or] 
high computation density.”



Steep subthreshold swings

B. Characteristics of FE-HZO FET 
 The SS degradation and hysteresis window 

enhancement are occurred with increasing annealing 
temperature due to crystalline transition as shown in Fig. 6. 
In order to polarize the ferroelectric material, ±2V sweep 
loop to examine hysteresis window indicates ∆VT > and < 
0.1V for > 700°C and < 650°C annealing, respectively. We 
define SS < 60mV/dec and hysteresis window < 0.1V as the 
criterion to validate the NC effect with crystalline 
ferroelectricity after RTA process. Only 600°C annealed can 
achieve the standard of both SSfor & SSrev < 60mV/dec and 
∆VT < 0.1V, and the transfer characteristics IDSVGS of 
FE-HZO is shown in Fig. 7. Note that SSrev exhibits superior 
to SSfor. The enlargement of IDSVGS of 600°C annealing (dash 
box in Fig. 7) is shown in Fig. 10. The near hysteresis-free 
with ∆VT=VT,for-VT,rev=95mV and the two mechanisms of 
current are obtained. For the subthreshold region, the dipole 
polarization is the same direction with applied E-field. With 

higher applied voltage, the polarization goes against the 
applied E-field and leads NC effect to increase surface 
potential and charges dramatically. The minima SSfor and 
SSrev show 42 and 28mV/dec, respectively. The FE-HZO 
FETs is operated at 150K with SS=23mV/dec which is 
beyond the physical limitation of Boltzmann tyranny in Fig. 
8. The extracted body factors (m) are 0.67 and 0.89 for 
VDS=0.1 and 0.5V, respectively, to confirm the NC effect. 
The features of this work are ultra-thin FE-HZO with 
physical thickness 5nm (CET=0.98nm), small hysteresis 
window ∆VT<0.1V, SSfor=42mV/dec, SSrev=28mV/dec, and 
switch-off <0.2V. Besides, the almost hysteresis-free (∆VT= 
VT,for-VT,rev=3mV) is obtained with FE-HZO/epi-Ge/Si FETs 
in Fig. 9. The added CGe in the equivalent circuit results in 
the capacitance of epi-Ge/Si MOS close to that of FE-HZO 
as shown in inset of Fig. 10. Note the high VG with high JG 
drops IDS off. 
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Fig. 6.  SS and hysteresis window (∆VT) vs RTA temperature. The SS 
degradation and hysteresis window enhancement occur with increasing
annealing temperature. Only 600°C FE-HZO can reach the criterion of both 
SSfor & SSrev < 60mV/dec for VDS=0.1V&0.5V and ∆VT < 0.1V. 
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Fig. 7.  Transfer characteristics (IDSVGS) of FE-HZO FETs with RTA
600°C. Besides, ±2V sweep loop to examine the hysteresis window indicates
∆VT < 0.1V for 600°C annealing. 
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Fig. 8.  Temperature dependence of the SS in forward sweep for the
FE-HZO FETs with VDS=0.1 and 0.5V. The extracted body factors (m) are
0.67 and 0.89 for VDS=0.1 and 0.5V, respectively, to confirm the NC effect. 
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Fig. 9.  IDSVGS of FE-HZO/epi-Ge/Si FETs. The hysteresis-free 
(∆VT=VT,for-VT,rev=3mV) is obtained due to the added CGe in the equivalent 
circuit resulting in the capacitance of epi-Ge MOS close to that of FE-HZO 
(Fig. 10). Note the high VG with high JG drops IDS off. 

IEDM15-61822.5.3

Lee, et al., Prospects for Ferroelectric 
HfZrOx FETs with Experimentally 
CET=0.98nm, SSfor=42mV/dec, 
SSrev=28mV/dec, Switch-OFF 
<0.2V, and Hysteresis-Free 
Strategies, IEDM 2015.

What do ferroelectric devices offer?

4

Analog synaptic behavior

Memory functionality

T1772017 Symposium on VLSI Technology Digest of Technical Papers

    
     

 

 
 
 
 
 

 
  

 
     

 
 
 

Fig. 2 (a) Gradual shift of ID-VG curves toward 
lower VT upon increasing VG from 2V to 5V. 
Programming can be achieved both by exciting 
at (b) gate VG or (c) source/drain/bulk VSDB.  

Fig. 3 VG waveforms for the channel 
conductivity increase (potentiation) and 
decrease (depression): (a)-(b) amplitude 
and (c)-(d) pulse width modulation. 

Fig. 4 Gradual VT tuning: (a) VT decrease 
and (b) increase using pulses in Fig. 3(a) 
and 3(b), respectively. VT is extracted 
adopting the constant current criterion: 
VT=VG at IT=0.1 µA*W/L. 

Fig. 5 Gradual VT tuning: (a) using 
waveform in Fig. 3(c) with VG=3V; 
(b) using waveform in Fig. 3(d) with 
VG=-2.8V. Decreasing VT in (b) for 
long pulses is due to hole trapping. 

Fig. 6 Continuous modulation of 
VT upon the repeated and 
alternated application of pulses 
in Figs. 3a and 3b. Potentiation: 
3V՜5V, depression: -2V՜-4V. 

Fig. 7 Distribution of five VT 
states depicted in Fig. 4. Each 
state is obtained starting from 
the state C applying a proper 
potentiation or depression pulse. 

Fig. 12 Spike timing waveform, similar as in [7], used to implement the 
asymmetric STDP shown in Fig. 11. Relative timing between the pre- and 
post-spike is converted in voltage height modulation across the synapse.
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Fig. 10 Synapse switching 
transition largely depends 
on the spiking duration tPW.  
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Fig. 13  Signal transmission through the synapse upon the biologically inspired 
pulse (green curve in (a)) for the two VT states and two resistance values in (a) 
linear and (b) logarithmic scale. 
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Fig. 9 (a) Switching transition of a FeFET-based 
synapse: (a) for different values of the resistance; (b) 
comparison of the synapse having R=100 kOhm with 
the FeFET only (see scheme in Fig. 2(b)).

Fig. 11 STDP-like curves 
obtained measuring the charge 
flow through the synapse with 
R=100 kOhm using the wave-
forms in Fig. 12. 

Fig. 1 (a) Cross-sectional TEM image of a FeFET in a 
28nm HKMG technology. An example of a 30nm 
channel length device is shown. (b) Schematic 
illustration of a FeFET in a multi-domain configuration. 

Fig. 8 Synapse containing a 
FeFET and a resistor R at its 
drain, is interposed between 
the pre- and the post-neuron. 
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Fig. 9 (a) Switching transition of a FeFET-based 
synapse: (a) for different values of the resistance; (b) 
comparison of the synapse having R=100 kOhm with 
the FeFET only (see scheme in Fig. 2(b)).
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channel length device is shown. (b) Schematic 
illustration of a FeFET in a multi-domain configuration. 
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drain, is interposed between 
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H. Mulaosmanovic, Novel ferroelectric FET based synapse for neuromorphic systems, 
VLSI Symposium, 2016.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Fig. 5. (a) ID-VG characteristics from a FeFET device for the two distinct polarization states 
(low-VT and high-VT). The switching voltage behavior of this device is shown in (b). 
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Fig. 8. Distribution of the drain current ID 
for the low-VT and high-VT state cells of 

the 64 kbit FeFET array. Reverse pattern is 
shown to be matched. 
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Fig. 2. (left) SEM top-views of the embedded FeFET macro, TEM crosssections of the 

HKMG logic transistors (middle) and the embedded FeFET (right) from the same wafer. Inset 
shows the gate stack details of the FeFET.

 
 

Fig. 1. Die picture (top left) and layout 
(bottom left) showing the 64 kbit array macro 
with its different test blocks. A detailed view 

of a 5x64 kbit block is shown to the right. 

Fig. 3. Ion-Ioff performance curves of (a) nFET and (b) pFET logic devices. The embedded 
28nm SLP-FeFET flow is matched to the reference 28nm SLP platform performance. 
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Fig. 4. Polarization hysteresis measured on 10,000 µm2 

metal-ferroelectric-metal (MFM) capacitor. 
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Table I. The FeFET eNVM extends the 28nm super 

low power platform offering. 

 

Fig. 6. JTAG yield across the wafer. Full 
functionality was observed all across the wafer. 
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Fig. 7. Stripe pattern of the drain current ID of 
the FeFET device (small portion of the entire 

64 kbit array shown only) written for alternating 
word-lines. 
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M. Trentzsch, et al, “A 
28nm HKMG super low 
power embedded NVM 
technology based on 
ferroelectric FETs,” IEDM, 
11.5.1-.2, 2016

Kahn, et al, Negative 
Capacitance in Short-
Channel FinFETs
Externally Connected to 
an Epitaxial Ferroelectric 
Capacitor , IEEE 
ELECTRON DEVICE 
LETTERS, VOL. 37, NO. 
1, JANUARY 2016 111 

Devices with integrated ferroelectrics are well-positioned to address aforementioned space!



Talk outline
• FeFET device, models

• FeFETs for logic-in-memory (LIM), compute-in-memory (CIM)
• Emphasis on design/benchmarking of content addressable memories (LIM)
• Briefly discuss FeFET-based CIM

• FeFETs for neuromorphic applications
• FeFET-based analog synapse
• FeFET-based (binary) convolutional neural networks (CNNs)

• Wrap-up

5



Background

6



FeFET device structure & operating modes

Aziz, et al., “Computing with Ferroelectric FETs:  Devices, Models, Systems, and Applications,” p. 1289-1298, DATE 2018. 7

FeFET transistor structurally similar 
to bulk MOSFET or FinFET
• Ferroelectric (FE) layer integrated 

into gate stack

Interplay between FE material + underlying transistor 
capacitance results in different modes of operation:
• Non-volatile mode (device can maintain state)
• Steep switching mode (aimed at high performance)

Ferroelectricity demoed in hafnium zirconium 
dioxide (highly compatible with CMOS)



Time-dependent Landau Khalatnikov (LK) model
• LK model is SPICE compatible

A. Aziz, S. Ghosh, S. Datta, and S. K. Gupta, “Physics-based circuit-compatible SPICE model for ferroelectric transistors,” IEEE EDL, vol. 37, no. 6, pp. 805–808, 2016 8

Electric field Polarization

static coefficients kinetic coefficient

! = #$+&$'+($)+*+$+,

a, b, g calibrated to hafnium zirconium oxide (HZO)

a -7x109 m/F
b 3.3x1010 m5/F/coul2

g 7x109 m/F
r 0.25
tFE 5.7 nm

Tunable 
Hysteresis 

𝐕𝐠𝐬 = 𝟎 

22nm 
Tfe=2.4n
m 

FeFET simulated by combining self-
consistent LK equation with 45 nm PTM



Multi-Domain Preisach Model

9

• The response of HZO film  is described by the total contributions of many ideal ferroelectric 
domains of varying !"± .
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K. Ni, M. Jerry, J.A. Smith, and S. Datta, “A Circuit Compatible Accuracy Compact Model for Ferroelectric FETs,” in VLSI Symposium 2018.



Multi-Domain Preisach Model

10

Calibration to the measured data allows model to accurately capture !" = $ %&', )
K. Ni, M. Jerry, J.A. Smith, and S. Datta, “A Circuit Compatible Accuracy Compact Model for Ferroelectric FETs,” in VLSI Symposium 2018.
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Operation
• Can switch FeFET polarization with:
• Positive gate voltage pulse (program)
• Negative gate voltage pulse (erase)

• Pulse causes stable, reversible Vt shift
• Low Vt, high Vt depends on dipole’s orientation

• 2 distinguishable states = memory window
• Sense with readout of drain current

Dünkel, et al., “A FeFET based super-low-power ultra fast embedded NVM technology for 22 nm FDSOI and beyond,” IEDM, 19.7.1, 2017. 11

 
 

Fig. 1. Physical gate length scaling of FeFET compared to 
the eNVM logic platforms. 

 
Fig. 2. The two non-volatile states of a FDSOI FeFET are realized by two stable 
polarization states of the ferroelectric layer in the transistor. A positive or negative 
voltage pulse at the gate can switch the polarization and hence the binary 
information. Readout is sensing the shift in the ID-VG curve. 

 
Fig. 3. TEM cross sections of embedded FeFET memory devices and logic n- and pFET 
integrated into the 22FDSOI Platform. 

 
Fig. 4. Logic pFET Ion-Ioff performance of the 
22nm eNVM technology is matched [3].

 
Fig. 5. Low- and high-VT (+/í3.8 V, 10 μs) ID-
VG curves of a subnominal WxL=80x20 nm 
FDSOI FeFET device. 

 
Fig. 6. Impact of back-bias on the ID-VG 
curves of a standard WxL=170x24 nm 
FDSOI FeFET device. 

 
Fig. 7. Impact of forward and reverse back-bias 
on the MW readout of a WxL=170x24 nm FDSOI 
FeFET device. 

 

 
 

Fig. 8. TCAD electrical field distribution 
within a ferroelectric FDSOI transistor 
(VD=VS=0 V, VG=í5 V, VB=floating). 

 
Fig. 9. Bipolar endurance cycling (+/í3.5 V, 
10 μs) of a WxL=170x24 nm FDSOI FeFET 
device. 

 
 

Fig. 10. 32 MBit test macro includes direct 
memory access (DMA) & JTAG for direct cell 
readout, design verification and test debugging. 

19.7.3 IEDM17-487
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May tradeoff pulse duration, amplitude depending on application-level figures of merit

ID-VG transfer characteristics
• W  x L = 80 nm x 20 nm
• ± pulses of 3.8V at 10 µs



Logic-in-memory & 
Compute-in-memory
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Logic-in-memory: CAMs
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Content Addressable Memory (CAM)
• Fast HW search O(1) for search intensive apps

• Often use ternary CAM (TCAM) – i.e., store 1, 0, or X (where X is “don’t care” (DC))
• TCAMs applicable to database apps, neural networks, routers and switches, etc.

Address lookup with TCAM, RAM TCAM array architecture

00 1 0 1 X X
01 0 1 1 0 X
10 0 1 1 X X
11 1 0 0 1 1

TCAM address

00 Port = A
01 Port = B
10 Port = C
11 Port = D

RAM address

Search
data 0 1 1 0 0 (e.g., 192.168.1.1)

01
Search 
result

Output 
Port=B

Choose 01, instead of 10 
as 01 more complete

https://www.pagiamtzis.com/cam/camintro/
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ProjectionNet: Learning Efficient On-Device Deep
Networks Using Neural Projections
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Abstract

Deep neural networks have become ubiquitous for applications related to visual
recognition and language understanding tasks. However, it is often prohibitive to
use typical neural network models on devices like mobile phones or smart watches
since the model sizes are huge and cannot fit in the limited memory available on
such devices. While these devices could make use of machine learning models
running on high-performance data centers with CPUs or GPUs, this is not feasible
for many applications because data can be privacy sensitive and inference needs
to be performed directly “on” device.
We introduce a new architecture for training compact neural networks using a
joint optimization framework. At its core lies a novel objective that jointly trains
using two different types of networks–a full trainer neural network (using existing
architectures like Feed-forward NNs or LSTM RNNs) combined with a simpler
“projection” network that leverages random projections to transform inputs or in-
termediate representations into bits. The simpler network encodes lightweight
and efficient-to-compute operations in bit space with a low memory footprint.
The two networks are trained jointly using backpropagation, where the projection
network learns from the full network similar to apprenticeship learning. Once
trained, the smaller network can be used directly for inference at low memory and
computation cost. We demonstrate the effectiveness of the new approach at signif-
icantly shrinking the memory requirements of different types of neural networks
while preserving good accuracy for several visual recognition and text classifica-
tion tasks. We also study the question “how many neural bits are required to solve
a given task?” using the new framework and show empirical results contrasting
model predictive capacity (in bits) versus accuracy on several datasets. Finally,
we show how the approach can be extended to other learning settings and derive
projection models optimized using graph structured loss functions.

1 Introduction

Recent advances in deep neural networks have resulted in powerful models that demonstrate high
predictive capabilities on a wide variety of tasks from image classification [1] to speech recogni-
tion [2] to sequence-to-sequence learning [3] for natural language applications like language trans-
lation [4], semantic conversational understanding [5] and other tasks. These networks are typically
large, comprising multiple layers involving many parameters, and trained on large amounts of data
to learn useful representations that can be used to predict outputs at inference time. For efficiency
reasons, training these networks is often performed with high-performance distributed computing
involving several CPU cores or graphics processing units (GPUs).

In a similar vein, applications running on devices such as mobile phones, smart watches and other
IoT devices are on the rise. Increasingly, machine learning models are used to perform real-time
inference directly on these devices—e.g., speech recognition on mobile phones [6], medical devices
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[21] offers a survey of binary hashing literature that is relevant to the projection functions used in our
work. The coupled network training architecture proposed in this paper (described in Section 3.1)
also resembles, conceptually at a high level, generative adversarial networks (GANs) [22] which are
used in unsupervised learning settings to reconstruct or synthesize data such photorealistic images.

3 Neural Projection Networks

In this section, we present Neural Projection Networks, a joint optimization framework for training
neural networks with reduced model sizes. We first introduce the objective function using a coupled
full+projection network architecture and then describe the projection mechanism used in our work,
namely locality sensitive hashing (LSH) and how it is applied here.

3.1 ProjectionNets

Neural networks are a class of non-linear models that learn a mapping from inputs ~xi to outputs yi,
where ~xi represents an input feature vector or sequence (in the case of recursive neural networks) and
yi is an output category for classification tasks or a predicted sequence. Typically, these networks
consist of multiple layers of hidden units or neurons with connections between a pair of layers. For
example, in a fully-connected feed-forward neural network, the number of weighted connections or
network parameters that are trained is O(n2), where n is the number of hidden units per layer.

Figure 1: Illustration of a Neural Projection Network trained using feed-forward NN.
Notation: ~xi represents the input feature vector, byi the ground-truth, yi the prediction from the
full network and y

p
i the prediction from projection network. P1...PT denote the T projection func-

tions that transform the input ~xi into d-bit vectors, one per function. W✓, B✓ and W
p, Bp rep-

resent the weights/bias parameters for the trainer network and projection network, respectively.
The training objective optimizes a combination of NN loss L✓(.) and projection loss L

p(.) that
biases the projection network to mimic and learn from the full trainer network. The objective also
incorporates a labeled loss bLp for the projection network.

We propose a new objective and joint optimization framework for training compact on-device mod-
els for inference. The architecture uses a trainer network coupled with a projection network and
trains them jointly. Figure 1 illustrates the Neural Projection Network architecture using a feed-
forward NN for the trainer network. The coupled networks are jointly trained to optimize a com-
bined loss function:

L(✓, p) = �1 · L✓(.) + �2 · L
p(.) + �3 ·

bLp(.) (1)

3

e.g., Projection Networks
Train neural network, lightweight network in lockstep

time

Vcap

Vload

Vmax

cold-start
energy

build-up
task

execution

start-up time

Fig. 2: Start-up time and cold-start energy overhead.

execution of task i, Vload,i its supply voltage and Pload,i the
power consumption during the execution of task i. These
parameters were characterized experimentally. In the inactive
state, the load is in deep sleep, consumes very little power, and
awaits the trigger from the energy management unit.

Converter Efficiencies: Since decoupled systems have the
source and load operating at different power points, voltage
converters are used. This step, while necessary, introduces
non-negligible losses, which are represented by boost and
buck converter efficiencies ηboost(V, I) and ηbuck. The boost
converter’s efficiency is particularly sensitive to the operating
voltage and current, meaning it must be parameterized. These
efficiencies were also characterized experimentally, and a simple
look-up table is used for simulations.

Other Energy Losses: Unfortunately, converter inefficien-
cies are not the only sources of energy losses. The maximum
power point tracking unit and the control circuit also consume
energy. The consumption of the control circuit Ictrl and buck
converter Ibuck consists of a constant current and resistive
component and hence depends on Vcap. For the energy
buffer, a capacitor of size Ccap, a resistive leakage Rcap is
assumed. Considering these components, the system leakage is
summarized as:
Pleak(t) =Vcap(t)× (Ictrl (Vcap(t)) + Ibuck (Vcap(t)))

+ Vcap(t)
2/Rcap.

(2)

Equations (1) and (2) can accurately describe the time evolution
of the system’s energy levels, as will be shown in Sec. VI-D.
They will be used in the remainder of this section to estimate
how different parameters impact the system’s losses, to then
calculate the optimal parameters that minimize the losses.

B. Minimizing Cold-Start Energy and Start-up Time

Given the system model presented above, we can start
optimizing the cold-start energy and start-up time. By definition
this is the fixed start-up cost to turn a transient system on.
Fig. 2 shows that after a period of energy unavailability, the
capacitance first needs to be recharged to the level of Vload.
In order to minimize these fixed costs for a given input power,
we need to minimize the start-up time defined as:

tstart-up =

⎧
⎨

⎩t | Vcap(t) =

√
2
∫ t
0 E′

cap(τ) dτ

Ccap
= Vload

⎫
⎬

⎭ (3)

However, the minimum capacitance is limited by the EMU’s
maximum supported voltage swing, as shown in the following
equation:

Cmin,i =
2Eload,i

ηbuck(V 2
max − V 2

load,i)
, (4)

Energy Management Unit (EMU)
control
interface

Energy Flow

Control Signals
Vcap

Vload

Vtrig

Pload

Vload

Pin

Vin

Vctrl

Eburst

Source
(Transducer)

Boost
Converter

Optimal
Capacitor

Control
Circuit

LoadBuck
Converter

Fig. 3: Transient system architecture with proposed EMU.

where Eload,i and Vload,i are the energy and voltage required
to execute task i, and Vmax is the EMU’s maximum supported
voltage. The optimal capacitor value is then selected as the
highest Cmin,i among all tasks i.

C. Minimizing Load Energy

To show the advantages of our EMU’s boost-buck architec-
ture compared to the boost-only architecture, let us consider
the case of supplying a constant current load. Assuming the
load has a maximum supply voltage tolerance from Vmax

down to Vmin, we have the following power consumption:
for boost-only architecture the average power of a task is
PA = (Vmin + Vmax)/2· Iload, while the buck has a constant
power of PB = (Vmin · Iload)/ηbuck. By comparing these two
power consumptions, it directly follows that buck converter re-
duces the load’s power consumption, if the following condition
for the buck converter efficiency holds:

ηbuck >
2Vmin

Vmin + Vmax
(5)

To illustrate with a numerical example, suppose a load has a
voltage tolerance of 3 to 5 V. This means that a buck converter
has a lower power consumption if ηbuck > 75%. Furthermore,
the use of a buck adds the possibility of tracking the load’s
optimal power point. When an application consists of multiple
tasks with different voltage requirements, we can use Dynamic
Energy Burst Scaling (DEBS) to minimize the load’s energy.

V. SYSTEM ARCHITECTURE

In this section we present the architecture of a transient
system with the proposed Energy Management Unit (EMU).
Fig. 3 shows the system’s main components. Since the EMU
can work with a wide variety of sources, this section focuses on
the rest of the system. In Sec. VI we will discuss one specific
source used to evaluate the proposed system.

A. Energy Management Unit (EMU)

This component is tasked with building up energy and
producing short bursts to power the load. The EMU provides
a control interface to dynamically adjust the bursts’ size
and voltage. Our proposed Dynamic Energy Burst Scaling
(DEBS) technique exploits this by using a feedback loop to
track the load’s optimal power point and minimize its energy
consumption.

Converters: The harvesting part of the system is based
on the commercial bq25505 energy harvesting chip. This chip
uses a boost converter to convert the input voltage to a level
where the energy can be stored in a storage device. Using its
integrated maximum power point tracking (MPPT), the boost
converter adjusts the input impedance such that the power
source always operates at its optimal power point to maximize
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Goal: more accurate, powerful machine learning 
models in resource constrained environments

TCAM -supported hashing again an important 
compute kernel

inference time, the lightweight model and corresponding operations is then applied to a given input
~xi to generate predictions ypi .

The choice of the type of projection matrix P as well as representation of the projected space ⌦P
in our setup has a direct effect on the computation cost and model size. We propose to leverage an
efficient randomized projection method using a modified version of locality sensitive hashing (LSH)
to define P(.). In conjunction, we use a bit representation 1d for ⌦P, i.e., the network’s hidden
units themselves are represented using projected bit vectors. This yields a drastically lower memory
footprint compared to the full network both in terms of number and size of parameters. We highlight
a few key properties of this approach below:

• There is no requirement for committing to a preset vocabulary or feature space unlike typi-
cal machine learning methods which resort to smaller vocabulary sizes as a scaling mecha-
nism. For example, LSTM RNN models typically apply pruning and use smaller, fixed-size
vocabularies in the input encoding step to reduce model complexity.

• The proposed learning method scales efficiently to large data sizes and high dimensional
spaces. This is especially useful for natural language applications involving sparse high
dimensional feature spaces. For dense feature spaces (e.g., image pixels), existing oper-
ations like fully-connected layers (or even convolutions) can be efficiently approximated
for prediction without relying on a large number of parameters. Such operations can also
be applied in conjunction with the projection functions to yield more complex projection
networks while constraining the memory requirements.

• Computation of P(xi) is independent of the training data size.
• We ensure that P(.) is efficient to compute on-the-fly for inference on device.

Next, we describe the projection method and associated operations in more detail.

3.2 Locality Sensitive Projection Network

The projection network described earlier relies on a set of transformation functions P that project
the input ~xi into hidden unit representations ⌦P. The projection operations outlined in Equation 4
can be performed using different types of functions. One possibility is to use feature embedding
matrices pre-trained using word2vec [24] or similar techniques and model P as a embedding lookup
for features in ~xi followed by an aggregation operation such as vector averaging. However, this
requires storing the embedding matrices which incurs additional memory complexity.

Instead, we employ an efficient randomized projection method for this step. We use locality sensi-
tive hashing (LSH) [25] to model the underlying projection operations. LSH is typically used as a
dimensionality reduction technique for applications like clustering [26]. Our motivation for using
LSH within Projection Nets is that it allows us to project similar inputs ~xi or intermediate network
layers into hidden unit vectors that are nearby in metric space. This allows us to transform the inputs
and learn an efficient and compact network representation that is only dependent on the inherent
dimensionality (i.e., observed features) of the data rather than the number of instances or the di-
mensionality of the actual data vector (i.e., overall feature or vocabulary size). We achieve this with
binary hash functions [25] for P.
Theorem 1 For ~xi, ~xj 2 Rn and vectors Pk drawn from a spherically symmetric distribution on
Rn the relation between signs of inner products and the angle ](~xi, ~xj) between vectors can be
expressed as follows:

](~xi, ~xj) = ⇡ Pr{sgn[h~xi,Pki] 6= sgn[h~xj ,Pki]} (6)

This property holds from simple geometry [25], i.e., whenever a row vector from the projection
matrix P falls inside the angle between the unit vectors in the directions of ~xi and ~xj , they will
result in opposite signs. Any projection vector that is orthogonal to the plane containing ~xi~xj will
not have an effect. Since inner products can be used to determine parameter representations that are
nearby, h~xi, ~xji = ||~xi|| · ||~xj || · cos](~xi, ~xj), therefore we can model and store the network hidden
activation unit vectors in an efficient manner by using the signature of a vector in terms of its signs.

Computing Projections. Following the above property, we use binary hashing repeatedly and apply
the projection vectors in P to transform the input ~xi to a binary hash representation denoted by
Pk(~xi) 2 {0, 1}d, where [Pk(~xi)] := sgn[h~xi,Pki]. This results in a d-bit vector representation,
one bit corresponding to each projection row Pk=1...d.
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Look at TCAMs based on ASCENT technologies to support 
these models, other applications – consider FeFETs here…



4T, 2FeFET TCAMs (w/negative supply, LK model)
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Mode !/! #/$ WL

Write S = 1 0 VDD / -V’DD VDD

S = 0 0 -V’DD / VDD VDD

P = Pre-charge phase, E = Evaluate phase

Mode !/! #/$ WL

Search D = 1 VDD / 0 0 0

D = 0 0 / VDD 0 0

Comparison transistors

Storage 
elements

VDD = 0.8V
V’DD = 0.4V

W L = VDD
T3, T4 on

VDD = 0.8V, 
VGS = positive, Write 1

VDD = -0.4V, 
VGS = negative, Write 0

1st, pre-charge matchline

% = 1% = 0
) = 1D= 0

Matchline
pulled down, 
no match

X. Yin et al., “Design and benchmarking of ferroelectric FET 
based  TCAM,” in DATE, 2017, pp. 1444–1449.



4T, 2FeFET TCAMs (w/o negative supply, LK model)

X. Yin et al., “Ferroelectric FET based Non-volatile Logic-in-Memory Circuits,” IEEE TVLSI (in submission), 2018. 16

Step WL0/WL1 BL/BL SL/SL
Write 0 1 Vwrite/0 0/VDD 0

2 0/Vwrite VDD/0

Write 1 1 Vwrite/0 VDD/0 0

2 0/Vwrite 0/VDD

Don’t 
care

1 Vwrite/0 0/VDD 0

2 0/Vwrite VDD/0

search 0/0 0/0 data
Vwrite 0

VDD

00

0

0

FeFET state 
unchanged

-VGS, write 0
VDD

Prior work considered TCAM based 
on LK model with negative supply



4T, 2FeFET TCAMs (w/o negative supply, LK model)

X. Yin et al., “Ferroelectric FET based Non-volatile Logic-in-Memory Circuits,” IEEE TVLSI (in submission), 2018. 17

0 VDD

00

VDD

Vwrite

-VGS, write 0

Step WL0/WL1 BL/BL SL/SL
Write 0 1 Vwrite/0 0/VDD 0

2 0/Vwrite VDD/0

Write 1 1 Vwrite/0 VDD/0 0

2 0/Vwrite 0/VDD

Don’t 
care

1 Vwrite/0 0/VDD 0

2 0/Vwrite VDD/0

search 0/0 0/0 data

00
FeFET state 
unchanged
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Mode BL / SL BL/SL SsL

Write S = 1 Step 1 Vwrite 0 0

Step 2 Vwrite 0 Vwrite

S = 0 Step 1 0 Vwrite Vwrite

Step 2 0 Vwrite 0

Mode BL / SL BL/SL SsL

Search 1 0 Vsearch 0

0 Vsearch 0 0

VDD=1V
Vwrite = 4V
Vsearch = 1V

Comparison transistors

Storage 
elements

BL/SL= 0V, 
VGS = 0, unchanged

BL/ SL= 4V, 
VGS = positive, Write 1

SsL = Vwrite; M1 VGS=0, unchanged; M2 VGS=-4V, Write 0

1st, pre-charge matchline

BL/ SL=0

S=0 S̅=1

BL/SL=1V
Matchline pulled 
down, no match

2T FeFET design (Preisach model)

X. Yin et al., “Design and Benchmarking of 2-Ferroelectric FET 
TCAM,” IEEE TCAS (in submission), 2018.



2T FeFET design (LK model)

X. Yin et al., “Design and Benchmarking of 2-Ferroelectric FET TCAM,” IEEE TCAS (in submission), 2018. 19

VDD=1V
Vwrite = 0.4V
Vsearch = 1V

Comparison transistors

Storage 
elements

BL/SL= -0.4V, 
VGS = negative, write 0

BL/ SL= 0.4V, 
VGS = positive, Write 1

SsL = 0

S=1 S̅=0

Static current undesired

BL/ SL

BL/SL

Pre

EP

Write 1

0.
4 

V

Write 0

-0
.4

 V

Cannot be fully 
turned off at VGS = 0



Benchmarking (area comparisons)

AJ. Li, R. K. Montoye, M. Ishii, and L. Chang, “1 mb 0.41 μm2 2t-2r cell nonvolatile TCAM with two-bit encoding and clocked self-referenced sensing,” IEEE Journal of Solid-State 
Circuits, vol. 49, no. 4, pp. 896– 907, 2014. 
BS. Matsunaga, A. Katsumata, M. Natsui, T. Endoh, H. Ohno, and T. Hanyu, “Design of a nine-transistor/two-magnetic-tunnel-junction- cell-based low-energy nonvolatile ternary 
content-addressable memory,” Japanese J. of Applied Physics, vol. 51, no. 2S, p. 02BM06, 2012 
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4T-2FeFET
w/negative supply

16T TCAM 9T-2MTJ TCAMB2T-2R TCAMA

4T-2FeFET 
w/o negative supply

TABLE I
WRITE OPERATION OF FEFET TCAM CELL

Vwrite=4V Vsearch=1V BL/SL BL/SL SsL S S

Write ’1’
Step 1 Vwrite 0 0 ’1’ hold
Step 2 Vwrite 0 Vwrite hold ’0’

Write ’0’
Step 1 0 Vwrite Vwrite ’0’ hold
Step 2 0 Vwrite 0 hold ’1’

Write ’don’t care’ 0 0 Vwrite ’0’ ’0’
Search ’1’ 0 Vsearch 0 – –
Search ’0’ Vsearch 0 0 – –

Fig. 4. 2FeFET-based TCAM cell simulation waveforms.

Fig. 5. 2X2 2FeFET-based TCAM cell layout. Note that � represents half
feature size F

conventional MOSFET due to the compatibility of the FeFET
(see Fig. 1(a)). Fig. 5 shows the 2X2 layout of the TCAM
designs that follow MOSIS Scalable CMOS design rules for
45 nm – i.e., SCMOS DEEP rules).

To make ”apples-to-apples” comparisons between the
2FeFET-based TCAM cell and other equivalent approaches,
the area of the 2FeFET-based TCAM cell is estimated and
collected along with the areas of other existing work from the
literature in Fig. 6. Based on the ”push rule” SRAM scaling
trend [23], [24] – i.e., 124F 2 at 65 nm and 171F 2 at 45 nm –
the area of a 16T CMOS TCAM is projected to be 1.12µm2

at 45nm. From Fig. 6, the area of 2FeFET-based TCAM cell
is 13% of that of 16T CMOS design. Besides CMOS TCAMs,
the proposed 2FeFET TCAM also exhibits less area overhead
than TCAM designs based on other emerging technologies,
i.e., ReRAM, MTJ, etc. This area efficiency is expected to help

Fig. 6. Comparisons of TCAM cell sizes. The CMOS TCAM area projection
is based on the scaling trend of push-rule SRAM according to ISSCC trends
[24] since CMOS TCAM uses two 6T SRAMs plus 4 transistors.

reduce the energy consumption of the FeFET-based approach
when compared with other TCAM designs at array level where
the parasitic overhead is considered.

B. TCAM array evaluation

We compare four different TCAM designs: CMOS,
4T2FeFET, ReRAM and 2FeFET, with the last three being
non-volatile. We simulated our 2FeFET-based and 4T2FeFET-
based TCAM array with HSPICE using the Presaich model
[] and LK model [10] respectively. The 45nm PTM model
[13] is adopted for all MOSFET devices A simple inverter-
based SA is used for detecting the output of TCAM arrays.
We assume the minimum sized transistors for the TCAM cell
and SA in order to reduce power. For the conventional CMOS-
based TCAM (Fig. 2(b)), we use the same 45nm PTM model
and minimum transistor sizes that were used for the FeFETs.
For the ReRAM-based TCAM, we use the 2T2R design (Fig.
2(d)), which is commonly used in the literature [4]. We assume
2M⌦ for HRS and 10k⌦ for LRS to implement the ReRAM-
based TCAM. The parasitics are extracted from the technology
node from CacTi [25] and included in HSPICE simulations.

We demonstrate the write energy, search energy and delay
comparisons for the 4 different TCAMs assuming a 64-
bit word with 64 rows. Fig. 7 shows the write and search
energies as well as search delays of 64⇥64 TCAM arrays.
The delay is measured for the worst case, where only one
bit is mismatched. The results show that our 2FeFET-based
TCAM design is 1.84⇥/1.67⇥/2.4⇥ faster than 4T2FeFET-
based/2T2R-based/16T CMOS-based TCAMs. The reason that
the FeFET-based TCAM is faster than CMOS- and ReRAM-
based TCAMs is that the FeFET has a larger ION as well as
a better ION /IOFF ratio, which leads to a larger discharging
current upon a mismatch.

Fig. ?? shows the TCAM search energies for different
TCAMs. The search energy per operation consists of two parts:

2 FeFET

Current projections suggest competitive density



Benchmarking methodology
• All designs evaluated in context of 64x64 array
• Assume
• 45 nm PTM
• Inverter-based SA
• Minimum sized transistors for TCAM cell, SA

• Extract wiring parasitics from DESTINY
• M. Poremba, et al., “Destiny: A tool for modeling emerging 3D NVM and EDRAM 

caches,” in DATE, 2015, pp. 1543–6. 

• Delay assumes worst case
• (i.e., 1-bit mismatch…)
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Fig. 6. Architecture of an M ⇥N TCAM array

TABLE II
OPERATIONS OF 4T-2FEFET TCAM CELL

Vwrite=4V Vsearch=1V WL BL/BL SL/SL S S

Write ’1’ Step 1 Vwrite Vwrite/0 0 ’1’ hold
Step 2 0 0/-Vwrite 0 hold ’0’

Write ’0’ Step 1 0 -Vwrite/0 0 ’0’ hold
Step 2 Vwrite 0/Vwrite 0 hold ’1’

Write don
0
t care 0 -Vwrite 0 ’0’ ’0’

Search ’1’ Vsearch Vsearch Vsearch/0 – –
Search ’0’ Vsearch Vsearch 0/Vsearch – –

B. 4T-2FeFET TCAM cell
For a complete comparison, we consider the 4T-2FeFET

design (Fig. 3(a)) in the context of the multi-domain Preisach
model. Unlike the LK FeFET model, the Preisach FeFET
model assumes a higher write voltage Vwrite (4V) and a read
voltage of 1V. The word-wise write operation is divided into
two steps. In contrast to the operations in [7], to write a logic
’1’ into the TCAM cell, in the first step, Vwrite is applied
to WL to activate the access transistors T3 and T4. Vwrite/0
is applied to the gates of FeFETs M1/M2, which sets the
polarization of M1. In the second step, WL is pulled down
to 0, 0/-Vwrite is applied to M1/M2, and M2 is set to a logic
’0’ state. Similar operation can be employed to write ’0’. For
the don

0
t care state, both FeFETs are switched to logic ’0’ by

applying �Vwrite to their respective gates. Searchlines SL/SL
are driven to ground to eliminate static current. To search,
Vsearch is applied to WL and both bitlines to turn the FeFETs
on, and 0/Vsearch is applied to searchlines per input data.

IV. EVALUATION

Here, we consider the area, write/search energies, and search
delay of the 2FeFET TCAM array, and compare it with
CMOS, ReRAM and 4T-2FeFET designs.

A. TCAM cell area
In order to make comparisons between the 2FeFET TCAM

cell and functional equivalents based on other technologies,
we laid out a 2⇥2 2FeFET TCAM array, and also collected
area measurements for other designs/technologies from the
published literature (see Fig. 7). Based on MOSIS Scalable
CMOS design rules for 45 nm, i.e., SCMOS DEEP rules [20]
and the ”push rule” SRAM scaling trend [21], [22], i.e., 124F 2

at 65 nm and 171F 2 at 45 nm, the area of a 16T CMOS
TCAM is projected to be 1.12µm2 at 45nm. Fig. 7 shows

Fig. 7. Comparisons of TCAM cell sizes.

that the area of a 2FeFET TCAM cell is just 13% of a 16T
CMOS design. The proposed 2FeFET TCAM also exhibits
smaller area compared with TCAM designs based on other
technologies, i.e., ReRAMs, MTJs, etc. This area efficiency is
expected to help reduce the search energies and delays of a
2FeFET approach when compared with other TCAMs at array
level when parasitic overhead is considered.

B. TCAM array evaluation

Here we compare and contrast four different TCAM de-
signs: CMOS, 2T2R, 4T-2FeFET and 2FeFET, with the last
three being non-volatile. To be consistent, the 4T-2FeFET
TCAM is evaluated based on the Preisach FeFET model. We
simulated our 2FeFET and 4T-2FeFET TCAM arrays with
HSPICE using the Preisach FeFET model [10]. The 45nm
PTM model [23] is adopted for all MOSFET devices. An
inverter SA is used for detecting the output of TCAM arrays.
We assume the minimum sized transistors for TCAM cells and
SAs in order to reduce power. For the 16T CMOS TCAM [24],
we use the same 45nm PTM model and minimum transistor
sizes that were used for the FeFETs. For a 2T2R TCAM
(Fig. 1(d)), we assume a HRS of 1M⌦ and a LRS of 10k⌦
[25]. The write parameters, i.e., set/reset current and voltage,
write time for ReRAMs are extracted from the NVSim-CAM
simulator [26]. The wiring parasitics are extracted for the
45nm technology node from DESTINY [27].

We demonstrate the write energy, search energy, and delay
comparisons for the 4 different TCAMs assuming a 64⇥64
array. Fig. 8 shows the write and search energies as well
as search delays of the different TCAM arrays. The delay
is measured for the worst case, where there is only one-
bit mismatch. The results show that our 2FeFET TCAM is
3.0⇥/1.03⇥/1.7⇥ faster than 4T-2FeFET/2T2R/16T CMOS
TCAMs, respectively. The reason for this is that a 2FeFET
TCAM has the smallest array area, and thus has the smallest
parasitic capacitance to discharge the ML upon a miss. Fig.
8(b) summarizes the TCAM search energies. The search en-
ergy per operation consists of two parts: the buffer energy and
the cell energy. The buffer drives the bitlines/searchlines as-
sociated with storage transistors/comparison transistors within
the TCAM arrays, and distributes the input across the whole
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64X64 size 16T CMOS 2T2R 4T-2FeFET 2FeFET 

Cell structure

Technology node 45nm 45nm 45nm 45nm

Cell area (µm 2) 1.12 (7.5x) 0.41[1] (2.7x) 0.65 (4.3x) 0.15 (1x)

ON/OFF ratio ~106 ~100[2] ~104 ~104

Search voltage 1V 1V 1V 1V

Search delay (ps) 582 (1.7x) 350 (1.03x) 1013 (3.0x) 341 (1x)

Search energy (fJ/bit/search) 1.0 (2.4x) 1.2 (2.7x) 0.5 (1.3x) 0.4 (1x)

Normalized EDP 4.1x 2.8x 3.8x 1x

Write scheme Voltage driven 
dynamic switching

Current driven Voltage driven Voltage driven

Write voltage 1V Set 1.8V[3]

Reset 1.2V[3] ±4V ±4V

Write time < 2ns ~ 10 ns 10 ns 10 ns

Write energy (fJ/row) 309 (3.5x) 288000 (3225x)[3] 512 (5.7x) 89 (1x)

Benchmarking (other figures of merit)
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64X64 size 16T CMOS 2T2R 4T-2FeFET 2FeFET 

Cell structure

Technology node 45nm 45nm 45nm 45nm

Cell area (µm 2) 1.12 (7.5x) 0.41[1] (2.7x) 0.65 (4.3x) 0.15 (1x)

ON/OFF ratio ~106 ~100[2] ~104 ~104

Search voltage 1V 1V 1V 1V

Search delay (ps) 582 (1.7x) 350 (1.03x) 1013 (3.0x) 341 (1x)

Search energy (fJ/bit/search) 1.0 (2.4x) 1.2 (2.7x) 0.5 (1.3x) 0.4 (1x)

Normalized EDP 4.1x 2.8x 3.8x 1x

Write scheme Voltage driven 
dynamic switching

Current driven Voltage driven Voltage driven

Write voltage 1V Set 1.8V[3]

Reset 1.2V[3] ±4V ±4V

Write time < 2ns ~ 10 ns 10 ns 10 ns

Write energy (fJ/row) 309 (3.5x) 288000 (3225x)[3] 512 (5.7x) 89 (1x)

Benchmarking (other figures of merit)
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FeFET-based CIM architecture

Sense Amplifier[0:n] 

…

…

…

… … …

R
ow

 d
ec

od
er

 A

R
ow

 d
ec

od
er

 B

Column decoder

B
itl

in
e

D
riv

er
 B

LW
[0

:m
]

Wordline Driver WLRW[0:n]

FeFET
cell

FeFET
cell

FeFET
cell

FeFET
cell

FeFET
cell

FeFET
cell

FeFET
cell

FeFET
cell

FeFET
cell

(a) (b)
SUM

COUT

CIN

CIN

CIN

XOR

XOR

COUT

VDD = 1V

PRE

CIN

RD/OR NOR

SENSESENSE

XORXOR AND AND

BLR

BLR
REF CELL

PRE PRE

ENCS

VPRE = 0.5V VPRE

ENCS

CMCM/MM

ENCSENVS

ENCS

ENCSBUFSENSEINVSENSE

PRECHARGER

SUM AND 
CARRY

BUFXOR

FeFET-CIM customized sense amp (SA)

• CM/MM is voltage-based sense scheme responsible for (N)OR 
logic and reads

• CM is current-based sense scheme used for Boolean (N)AND, 
X(N)OR, and ADD; also leverages voltage scheme

• SUM and CARRY is additional circuity for carry and sum



Precharged bitline

FeFET-based CIM:  OR operations

Dayane Reis, et al., to appear at ISLPED 2018.

2T+1FeFET 
memory cell
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Read access 
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Write access 
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device)
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Voltage based stage 

of SA on page 4
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FeFET-based CIM:  benchmarking

Dayane Reis, et al., to appear at ISLPED 2018.
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FeFET-CIM has speed-ups (energy reductions) of ∼119X 
(∼1.6X) and ∼1.97X (∼1.5X) over ReRAM and STT-RAM CIM 
for in-memory addition of 32-bit words 

FeFET-CIM approach offers an average speedup of ∼2.5X and 
energy reduction of ∼1.7X when compared to a conventional 
(not in-memory) approach. 

1

Computing in Memory with Spin-Transfer Torque
Magnetic RAM

Shubham Jain, Ashish Ranjan, Kaushik Roy, Anand Raghunathan
School of Electrical and Computer Engineering, Purdue University

{jain130,aranjan,kaushik,raghunathan}@purdue.edu

Abstract—In-memory computing is a promising approach to

reducing the time and energy spent on data transfers between

the processor and memory, thereby alleviating the processor-

memory gap. We explore in-memory computing with STT-

MRAM, which is considered a promising candidate for future

on-chip memories due to its non-volatility, density, and near-

zero leakage. We propose suitable modifications to peripheral

circuits that enable standard STT-MRAM arrays to perform

bitwise, arithmetic and complex vector operations. We address

the key challenge of computing reliably under process variations,

by leveraging ECC schemes that are employed for conventional

memory operations to also correct errors during in-memory

computations. We propose architectural enhancements to the

instruction set and on-chip bus that enable the proposed design,

Spin-Transfer Torque Compute-in-Memory (STT-CiM), to be

integrated into a programmable computing system. We also

present data mapping techniques to increase the effectiveness of

STT-CiM. We evaluate STT-CiM using a device-to-architecture

modeling framework, and integrate cycle-accurate models of

STT-CiM with a commercial processor and on-chip bus (Nios

II and Avalon from Intel). Our system-level evaluation shows

that STT-CiM provides system performance improvements of

3.93X on average (upto 12.4X), and concurrently reduces memory

system energy by 3.83X on average (upto 12.4X).

I. INTRODUCTION

The growth in data sets and increase in the number of
cores place high demands on the memory systems of modern
computing platforms. Consequently, a growing fraction of
transistors, area and power are utilized towards memories.
CMOS memories (SRAM and embedded DRAM) have been
the mainstays of memory design for the past several decades.
However, recent technology scaling challenges in CMOS
memories, along with an increased demand for memory ca-
pacity and performance, have fueled an active interest in
alternative memory technologies.

Spintronic memories have emerged as a promising candidate
for future memories due to several desirable attributes such as
non-volatility, high density, and near-zero leakage. In particu-
lar, Spin Transfer Torque Magnetic RAM (STT-MRAM) has
garnered significant interest with various prototype demonstra-
tions and early commercial offerings [1]–[3]. There have been
several research efforts to boost the efficiency of STT-MRAM
at the device, circuit and architectural levels [4]–[26]. In this
work, we explore a complementary direction, viz in-memory
computing [27]–[33], by enhancing STT-MRAM arrays to
perform a range of arithmetic, logic and vector operations.
We propose circuit and architectural techniques to address the

challenges associated with designing and using such structures,
including reliable computation under process variations and
architectural support to enable the structures to be used in a
programmable processor based system.

In-memory computing is motivated by the observation that
the movement of data from bit-cells in the memory to the
processor and back (across the bit-lines, memory interface,
and system interconnect) is a major bottleneck to performance
and energy efficiency of computing systems [34].

Efforts that have explored the closer integration of logic
and memory are variedly referred to in the literature (logic-
in-memory, compute-in-memory, processing-in-memory, etc.),
and may be classified into three categories – moving logic
closer to memory [35]–[47], performing computations within
memory structures [27]–[33], and embedding nonvolatile stor-
age elements within logic [48]–[51]. The first two approaches
address the efficiency of performing active computation,
whereas the third addresses the challenge of memory energy
during idle periods.

Our proposal addresses the problem of in-memory com-
puting with spintronic memories, to improve performance
and energy efficiency without adversely impacting density or
efficiency as a conventional memory. We are aware of only
one other effort on in-memory computing with spintronic
memory [29], which requires the addition of a transistor to
each bit-cell (resulting in a 2T-1R cell) [29]. Our proposal
differs significantly in that it requires no changes to the bit-
cells and core array, enabling it to be used without sacrificing
memory density. Our proposal is based on the observation that
by enabling multiple wordlines simultaneously 1, and sensing
the effective resistance of all the enabled bit-cells in each bit-
line, it is possible to directly compute logic functions of the
values stored in the bit-cells. We note that Pinatubo [30] first
proposed enabling multiple wordlines to perform computations
within Non-Volatile Memories (NVMs). Although our work
shares this mechanism with Pinatubo, we differ from (and
go beyond) it in several key aspects. First, we address the
key challenge of reliable in-memory computing under process
variations. While reliable sensing under the limited tunneling
magneto-resistance (TMR) of STT-MRAM bit-cells is known
to be a challenge [13]–[16], this is unfortunately further aggra-
vated by in-memory computations. We show how to leverage

1Note that this will lead to short circuit paths in SRAMs, but not in STT-
MRAM due to the resistive nature of bit-cells.
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Logic Design Within Memristive Memories Using
Memristor-Aided loGIC (MAGIC)

Nishil Talati, Saransh Gupta, Pravin Mane, and Shahar Kvatinsky, Member, IEEE

Abstract—Realizing logic operations within passive crossbar
memory arrays is a promising approach to enable novel com-
puter architectures, different from conventional von Neumann ar-
chitecture. Attractive candidates to enable such architectures are
memristors, nonvolatile memory elements commonly used within
a crossbar, that can also perform logic operations. In such novel
architectures, data are stored and processed within the same entity,
which we term as memristive memory processing unit (MPU). In this
paper, Memristor-Aided loGIC (MAGIC) family is discussed with
various design considerations and novel techniques to execute logic
within an MPU. We present a novel resistive memory—the trans-
pose memory, which adds additional functionality to the memristive
memory, and compare it with a conventional memristive memory.
A case study of an adder is presented to demonstrate the design
issues discussed in this paper. We compare the proposed design
techniques with the memristive IMPLY logic in terms of speed,
area, and energy. Our evaluation shows that the proposed MAGIC
design is 2.4× faster and consumes 66.3% less energy as compared
with the IMPLY-based computing for N-bit addition within mem-
ristive crossbar memory. Additionally, we compare the proposed
design with IMPLY logic family on ISCAS-85 benchmarks, which
shows significant improvements in speed (2×) and energy (10×),
with similar area.

Index Terms—IMPLY, MAGIC, memristor, memristive mem-
ory processing unit (MPU), transpose memory, von Neumann
architecture.

I. INTRODUCTION

R ELENTLESS technology migration to the nanometer
regime over the past few decades has led to high capacity

memory and storage systems. This aggressive scaling, how-
ever, negatively affects the cost, performance, and reliability of
flash and DRAM technologies, resulting in an increased interest
in alternative memory technologies and architectures. Recently
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memristors, originally proposed by Chua in 1971, have shown
promising solutions to these design challenges, and thus, have
emerged as a prime interest among researchers. In [1], Chua
proposed a fourth fundamental passive circuit element, apart
from resistor, inductor, and capacitor. Chua and Kang extended
the theory of memristors to memristive systems in 1976 [2].
Memristors and memristive devices are two-terminal electronic
devices with variable resistance (also called memristance). This
resistance depends on the amount and direction of the charge
passed though the device and is bounded by minimum and max-
imum limits (RON and ROFF , respectively). In this paper, we
use the terms memristor and memristive device interchangeably,
for simplicity.

Several possible applications involving memristors have
evolved, such as nonvolatile memories [3], where resistance
serves to store digital data, and the use of memristors as logic
elements [4]–[8]. Additionally, memristors with high adaptive
thresholds can be used to mimic the higher order behavior of
synapses and thus can be utilized efficiently in neuromorphic
systems [9]–[11].

The versatile nature of a memristor exploits the possibility of
moving beyond conventional von Neumann architecture, as it
can be used as both memory and logic element. In von Neumann
architecture for massive parallel applications, data transfer re-
quires a wide data bus, long latency, and consumes relatively
high power [8], [12]. In novel architectures using memristors,
memory and logic operations are performed within the same
crossbar structure, resulting in almost no data transfer and sig-
nificant reduction in latency and power. Thus, these architectures
are potentially suitable for massive parallel applications, where
a vast amount of data needs to be processed.

Three basic concepts to allow logic operations inside passive
crossbar arrays are discussed in [13]. One of the concepts re-
lies on programmable interconnects. Several such approaches
expand this idea to realize programmable logic arrays [14] and
field programmable logic arrays (FPGAs) [15], for an example
a CMOL FPGA [16], [17]. The second concept is about using
the passive crossbar memories as look up tables (LUTs) [18].
The third approach introduces realization of Boolean functions
using stateful logic, such as IMPLY [5], [19].

An improved memristive stateful logic is Memristor Aided
loGIC (MAGIC) [20]. The quantifiable advantages of this logic
over IMPLY are that, it requires a lower number of supply
voltages, supports more basic Boolean functions, and it does not
require additional hardware to the crossbar (such as resistors
in the case of IMPLY). In MAGIC, a separate memristor is
dedicated to output, whereas in the case of IMPLY, one of the
input memristors acts as an output memristor. Thus, one of the

1536-125X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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• Computation is mapped to vector-matrix or 
matrix-matrix multiplication
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Jerry, Matthew, et al. "Ferroelectric FET analog synapse for acceleration of deep neural network training.” in IEDM, p. 6-2, 2017.



Vector-matrix multiplication with crossbars
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• Dense analog synaptic memory arrays perform MACs and update at the location of the data
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• Synaptic memory needs to be high density, low latency, energy efficient, and preserve high network accuracies.
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• Ferroelectric FET is a promising candidate for an analog synaptic memory device.

n+ n+
p-Si	(100)

Ferroelectric FET

Hf0.5Zr0.5O2

Filamentary O-RRAM Non-Filamentary RRAM

• 2T design proposed
ü Electric-field switching
ü 75ns pulse widths
ü Large and tunable 

G max/G min

ü High density
• Electro-thermal switching
• <100ns pulse widths to 

be demonstrated
• Low G max/G min ratios 

demonstrated thus far

ü High density
• Electro-thermal switching
ü <100ns pulse widths
• Low G max/G min ratios 

demonstrated thus far

Jerry, Matthew, et al. "Ferroelectric FET analog synapse for acceleration of deep neural network training.” in IEDM, p. 6-2, 2017.
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• Electric-field controlled partial polarization switching in ferroelectrics FETs can be harnessed for synaptic 
memory with nanosecond updates.
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• Multi-domain Preisach model accurately captures the the response of the remnant polarization
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Simulated G vs Pulse Number:  Scheme 3
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• FeFET synapse response from simulated Pr in programming scheme 3.
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FeFET Analog Synapse:  Scheme 3
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• Partial polarization switching within the ferroelectric gate oxide results in a gradual decrease/increase 
(potentiation/depression) in VT.
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Analog Synapse Benchmarking
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• FeFET under pulse scheme 3 exhibits the reduced footprint, high accuracy, and low latency

[2] L Gao, Nano. Tech., 2015 - [3] S. H. Jo, 
Nano Letters 2010 - [4] J. Woo, EDL, 2016 - [5] 
S. Park, IEDM, 2013
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FeFET-based binary crossbars:  circuits

Xioaming Chen, Xunzhao Yin, Michael Niemier, and Xiaobo Sharon Hu, “Design and Optimization of FeFET-based Crossbars for Binary Convolutional Neural 
Networks,” to appear in Design, Automation, and Test in Europe (DATE), 2018. 37
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Basic cells consists of 
2 access transistors1

Complementary (input) bits applied to !" and !"2

Cell performs XNOR operation between input, weight
• B" and #" set to read voltage (VR)

4

Output read at VL by current or voltage5

WL set to VDD3



FeFET-based crossbars:  benchmarking
Benchmarking assumptions for 64x64 crossbar array
• FeFET: 10nm FinFET, Tfe=10.5nm, VW L=0.6, VW=0.6, VR=-0.55
• RRAM : Ron=10KW , Roff=1MW , VW=2
• For both: VHL=0.3
• Average case: half input bits and half weights are 1

Xioaming Chen, Xunzhao Yin, Michael Niemier, and Xiaobo Sharon Hu, “Design and Optimization of FeFET-based Crossbars for Binary Convolutional Neural 
Networks,” to appear in Design, Automation, and Test in Europe (DATE), 2018. 38

TABLE III: Comparison between vertical moves and strided moves.
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Execution time
l
Cout
N

m l
WFHFCin

M

m
TclkWOHO(1 +N)

�
= TV

l
Cout
N

m l
WFHFCin

M

m
Tclk

⇣
WOHO +

l
WOHO

S

m
N

⌘
�
= TS

Crossbar energy
l
Cout
N

m l
WFHFCin

M

m
TclkWOHO (PR +NPW )

l
Cout
N

m l
WFHFCin

M

m
Tclk

⇣
WOHOPR +

l
WOHO

S

m
NPW

⌘

Register energy NB

⇣
TV PReg +

l
Cout
N

m l
WFHFCin

M

m
WOHOEReg

⌘
SNB

⇣
TSPReg +

l
Cout
N

m l
WFHFCin

M

m l
WOHO

S

m
EReg

⌘

Register area NBAReg SNBAReg

BL BL

WL

VL

HL HL

Fig. 6: CMOS-based cell design.
TABLE IV: RC parasitic parameters used in our simulations.

Cell area (F 2) Rwire (⌦) Cwire (fF)
CMOS 150 0.245 0.059
FeFET 60 0.155 0.037

RRAM (1R*2) 4 (⇥2) [30] 0.04 0.0096
RRAM (1T1R*2) 20 (⇥2) [30] 0.09 0.022

the same convolution window. Obviously, the computation
order problem is independent of any particular devices so our
analysis is universal for any crossbar-based CNN accelerators.

V. EVALUATION
We simulated our crossbar design with HSPICE using an

FeFET model from [20]. The 10nm fin field-effect transistor
(FinFET) PTM (tfin=8nm, hfin=21nm, nfin=1) [21] is
adopted for all MOSFET devices. The FE layer thickness TFE
is 10.5nm. The crossbar array size is 64⇥64. We compare
our design with RRAM and CMOS equivalents. RRAM-based
crossbars have two different structures (1R and 1T1R), and
typically two separate crossbar arrays are used. We refer to
the two structures as “1R*2” and “1T1R*2”, respectively. We
use RON = 10K⌦ and ROFF = 1M⌦ for RRAMs [31].
The programming voltage of RRAMs is 2V [30]. For CMOS
equivalents, the cell design is shown in Fig. 6; a static random-
access memory (SRAM) and two transistors to realize the
XNOR function are used. For all designs, the HL and HL
voltage is 0.3V when reading. The operating frequency is
100MHz. Unless otherwise noted, area is estimated by assum-
ing that a transistor with the unit width consumes 15F 2 area.
Simulations account for distributed wire parasitics. Table IV
shows the wire resistance and capacitance between adjacent
cells, which are estimated from cell area.
A. Results of FeFET-based Crossbar Array and Comparisons

As different distributions of inputs and weights can lead to
different write and read power, we consider the average case,
in which half of the inputs and weights are 1. We randomly
select the locations of these 1s and calculate the average power
and delay over multiple simulations.

Fig. 7 shows the results of our FeFET-based crossbar array
as well as the comparisons with CMOS- and RRAM-based
equivalents. The read voltage of FeFETs (VR, see Fig. 3) is
�0.55V. Compared with the two RRAM-based designs, our
design reduces write power by 5600⇥ and 395⇥, and reduces
read power by 4.1⇥ and 3.1⇥. Read latency is 8% higher.
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Fig. 7: Results of crossbar arrays and comparisons.
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Fig. 8: Normalized PDP (for read) under different VR.

For the CMOS-based design, we can also set HLs and HLs
to zero when programming, so the write power is extremely
low due to the low programming power of SRAMs. The read
power of the CMOS-based design is also the lowest because
a MOSFET has lower IDS than an FeFET when they have
the same width. However, the read delay of the CMOS-based
design is the longest. The FeFET-based design is the best in
terms of read power-delay product (PDP).

Fig. 8 shows the normalized read PDP under different VR

values. Data is normalized to the CMOS-based design. The
power-delay product increases linearly with VR, so to obtain
a low PDP, we should select a low VR.

B. Results of Workload Mapping
Now we show the results of workload mapping and compu-

tation order. We take one convolution layer (Cin=Cout=512,
WO = HO = 32, and WF = HF = 3) in VGG-16 [32] as
an example. A 64⇥64 FeFET-based crossbar array is used
to compute this layer. We use 6 bits to store intermediate
results (i.e., B = 6). In order to analyze the impact of the
number of register rows (S, which is also the number of
strides) for strided moves, Fig. 9 shows the results under
different S values. The crossbar array, adders and registers
are considered in these results. Note that the adders are shared
so we only consider one row of adders, but the registers are
not. The results of vertical moves are the same as those for
strided moves when S=1. The execution time is significantly
reduced when S increases, indicating that the execution time
is dominated by re-programming when the crossbar array is
not large enough. The total energy is also reduced when S
increases, but the reduction ratio is not high, indicating that
the read energy is comparable to the write energy. The area

RC parasitic parameters used in simulations

Write power (for 1 column)

Read delay

For CMOS programming, 
can also set HLs to 0, SRAM 
write power low

RRAM requires >> write 
voltage, higher power

Read power

CMOS lowest 
due to IDS

(Normalized) power delay product

FeFET lowest 
PDP + NV



Takeaways … promising metrics!
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TABLE I
WRITE OPERATION OF FEFET TCAM CELL

Vwrite=4V Vsearch=1V BL/SL BL/SL SsL S S

Write ’1’
Step 1 Vwrite 0 0 ’1’ hold
Step 2 Vwrite 0 Vwrite hold ’0’

Write ’0’
Step 1 0 Vwrite Vwrite ’0’ hold
Step 2 0 Vwrite 0 hold ’1’

Write ’don’t care’ 0 0 Vwrite ’0’ ’0’
Search ’1’ 0 Vsearch 0 – –
Search ’0’ Vsearch 0 0 – –

Fig. 4. 2FeFET-based TCAM cell simulation waveforms.

Fig. 5. 2X2 2FeFET-based TCAM cell layout. Note that � represents half
feature size F

conventional MOSFET due to the compatibility of the FeFET
(see Fig. 1(a)). Fig. 5 shows the 2X2 layout of the TCAM
designs that follow MOSIS Scalable CMOS design rules for
45 nm – i.e., SCMOS DEEP rules).

To make ”apples-to-apples” comparisons between the
2FeFET-based TCAM cell and other equivalent approaches,
the area of the 2FeFET-based TCAM cell is estimated and
collected along with the areas of other existing work from the
literature in Fig. 6. Based on the ”push rule” SRAM scaling
trend [23], [24] – i.e., 124F 2 at 65 nm and 171F 2 at 45 nm –
the area of a 16T CMOS TCAM is projected to be 1.12µm2

at 45nm. From Fig. 6, the area of 2FeFET-based TCAM cell
is 13% of that of 16T CMOS design. Besides CMOS TCAMs,
the proposed 2FeFET TCAM also exhibits less area overhead
than TCAM designs based on other emerging technologies,
i.e., ReRAM, MTJ, etc. This area efficiency is expected to help

Fig. 6. Comparisons of TCAM cell sizes. The CMOS TCAM area projection
is based on the scaling trend of push-rule SRAM according to ISSCC trends
[24] since CMOS TCAM uses two 6T SRAMs plus 4 transistors.

reduce the energy consumption of the FeFET-based approach
when compared with other TCAM designs at array level where
the parasitic overhead is considered.

B. TCAM array evaluation

We compare four different TCAM designs: CMOS,
4T2FeFET, ReRAM and 2FeFET, with the last three being
non-volatile. We simulated our 2FeFET-based and 4T2FeFET-
based TCAM array with HSPICE using the Presaich model
[] and LK model [10] respectively. The 45nm PTM model
[13] is adopted for all MOSFET devices A simple inverter-
based SA is used for detecting the output of TCAM arrays.
We assume the minimum sized transistors for the TCAM cell
and SA in order to reduce power. For the conventional CMOS-
based TCAM (Fig. 2(b)), we use the same 45nm PTM model
and minimum transistor sizes that were used for the FeFETs.
For the ReRAM-based TCAM, we use the 2T2R design (Fig.
2(d)), which is commonly used in the literature [4]. We assume
2M⌦ for HRS and 10k⌦ for LRS to implement the ReRAM-
based TCAM. The parasitics are extracted from the technology
node from CacTi [25] and included in HSPICE simulations.

We demonstrate the write energy, search energy and delay
comparisons for the 4 different TCAMs assuming a 64-
bit word with 64 rows. Fig. 7 shows the write and search
energies as well as search delays of 64⇥64 TCAM arrays.
The delay is measured for the worst case, where only one
bit is mismatched. The results show that our 2FeFET-based
TCAM design is 1.84⇥/1.67⇥/2.4⇥ faster than 4T2FeFET-
based/2T2R-based/16T CMOS-based TCAMs. The reason that
the FeFET-based TCAM is faster than CMOS- and ReRAM-
based TCAMs is that the FeFET has a larger ION as well as
a better ION /IOFF ratio, which leads to a larger discharging
current upon a mismatch.

Fig. ?? shows the TCAM search energies for different
TCAMs. The search energy per operation consists of two parts:
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