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IEEE Notation
And IV Curves

MOSFETs-A CMOS VLSI Design Slide 3

IEEE Standard Device Notation

Q Vv, = voltage between terminals with
“a” positive and “b” negative.
= By definition: V,, =-V,,
Q V, = voltage at terminal “a” relative to
some standard terminal
Q |, is current into terminal “a”.
= Electrons are flowing out.
U Denoting dependence on time:
= Upper case, V or |, denote time
independent (DC) values;
= Lower case, v or i, denote time
dependent values.
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Introduction

U So far, transistors = ideal switches
U Reality: ON transistor passes finite current
= Depends on terminal voltages
= Derived from current-voltage (I-V) relationships
U Transistor gate, source, drain also have capacitance
» |=C (AVIAt) = At=(C/l) AV
= Capacitance and current determine speed
u Vv, V,, Vg4 voltages as measured from body

Vv - (Body)
+ Body
+ f' Vds?
Vgs -
nmos nmos4 pmos pmos4
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IV Curves: Simple 2-Terminal Devices

What is curve for |
- as a function of V?

\'
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IV Curves: Switched Resistance

+

Switch has
3 Positions:
A,B,C,D

A ; wionBi_—=T"T
i _fé‘i—s—“—:‘-’:'ﬂAR
b
What is curve for | V
as a function of V
N and switch position?
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IV Curves: Potentiometer
Iﬂ!rﬂw!s:iﬁﬁl \
"""" T
( Counte IR
- __\39,‘.‘3——‘5‘\89? =

MOSFETs-A

What is curve for |
as a function of V
and rotation?
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IV Curves: Diode

______________ 1 R
o
e
vl
ol
]
1
- 1
______________ ll R
Assume resistance R a function of V i
+ =R, (large) for V<V, : i
+ =R, (small) for V> V; [ E— )
Vo
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IV Curves: Voltage-Sensitive Resistor

<+ \ i :
fSaturated: region: !

I | a constant
R " I I
R i
< i
'l '
- VA
"""""" " Linsar tegion:
. . . , . I
Assume_ resistance R a function of V: " llinearifunction pf V
+ =R, (i.e. constant) for V<V, d : ;
* = V(R1Nsat) forv > Vsat /, H
Vsat

\"
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IV Curves: 3-Terminal Device

“Gate” — I V

Assume resistance R a function of V:
+ =R, (i.e. constant) for V<V,

.« =V(R,IVg,) for V>V,

AND R, is a function of V,
* Larger Vg reduces R,

MOSFETs-A
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Increasing Vg

MOS Gate

and Effect on Channel

MOSFETs-A
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CMOS R and C

Gate
Capacitance

| e —
‘ -_/VW_-
gguraccei’faDr:ilen Channel Interconnect
P On-Resistance Capacitance
and Resistance
|
Aﬁ = f e
A
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MOS Gate Capacitor

0 Gate and body form MOS capacitor
0 Operating modes

Sy Ppolysilicon gate
silicon dioxide insulator

Accumulation mode:
Holes attracted below gate
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MOS Gate Capacitor

U Gate and body form MOS capacitor
U Operating modes

polysilicon gate
silicon dioxide insulator

Accumulation

p-type body

0<V, <V,

Depletion Mode:
Holes repelled from under gate

depletion region
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MOS Gate Capacitor

0 Gate and body form MOS capacitor
0 Operating modes

A lati O .
ccumuiation POODDPPDDODDDDDDDP|
CISICICICICICICICICICISICICICIC)
- depletion region
Depletion

VT is the gate voltage at the THRESHOLD
between Depletion and Inversion

1 . Ny Y =
Inversion Mode: vov | B X
00000600606 OOEG| inversion region
depletion region
Holes further repelled P B06606666666606
GlslSISISISISISISISICISICICISIS)

Free electrons attracted
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Channel Current

What happens if right side more positive relative to left?
Electrons in Inversion Region leaves channel to right
Replacement electrons enter from left ——>

Current moves from right to left «—

ooo0do

This side Gnd This Side +

Inversion

) ®
CISISICISISICICISICICISICICISIS]

(©)
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Terminal Voltages

0 Mode of operation depends on Vg Vs Vs . +
vV, vV
" Vgs=Vg-V; o od

[ ] ng=Vg—Vd Vs —|_ +I— Vd
" Vgs=Vyg—-Vs= Vgs - ng Ves
O Source and drain are symmetric diffusion terminals

= By convention, source is terminal at lower voltage (nmos)
= HenceVy >0

0 Also assume nMOS body is grounded.
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Regions of Operation

0 Assume
= nMOS body is grounded.
= First assume source is 0 V too.

O Three regions of operation lld *
= Cutoff +_‘ Vye
» Linear Vgs -

= Saturation

U Each region has different
relationship between
currents and voltages

U Based largely on V, vs V;
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Vgs < V7 nMOS Cutoff

d No “channel”

a 1,=1, (source & body same)
Q I, =14=0

source B nt oodeod nt |e drain
CELELELEEEREICICIEIEIEIEIS
p-type body

J:

Note: source and drain do have “free” electrons

MOSFETs-A CMOS VLSI Design Slide 20

10



Vgs>Vr & Vi <(Vy4s - V1): NMOS Linear

Channel forms
= “Inversion” of charges
4s > 0, but small
Current flows from drain to source
= e from source to drain
lys increases with Vg
* Aslongas V< (Vg—Vy)
Similar to linear resistor

p-type body
b

_
electron flow
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D 0< Vi <V,

NnMOS Saturation

U When V , becomes sufficiently large, channel “pinches off”
" Vds > Vgs - VT
4 1, becomes independent of V
0 We say “current saturates”
O Similar to current source
U Denoted I,
V o <V,
Idsat _
o0 SV -
P666606000 @ Voo™ VesVs
p-type body
—J;,
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Summary Modes

U Cutoff: V, < V;
= No current flow across channel

dLinear: V> Vyand Vi > 0 but small
= Current approximately linear with V

U Saturation: Vg > Vyand Vg, >> 0
= Current independent of V
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Water Model
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Water Model (C. Sequin)

AV4 QO Source/drain each have deep
GS

container of fluid
1

< Applying positive voltage
Vo=0 lowers top of container
s~ QO Gate has plunger

« Starts at height V; above
surface

< Positive voltage on gate
lowers plunger

VDS
\4
Vg >0
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Regions of Operation

Ves < V1 Ves > V1 Vbs < VsV

cutoff no current current linear
with Vg
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Regions of Operation (cont)

Vps = Ves-Vr Vps > Vgs-Vr Ves < Vi

“pinch-off” saturated cutoff
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Idealized MOS |-V Characteristics:
Different Lines for different V, values

. Saturation .
Ips <
>
N/
Cutoff Vi < V7 l
] Vs
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“Long Channel”
MOS Mathematical Model
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MOS Device Notation

4 V. is the voltage of the drain relative to the source.
= By definition: V= -V,

Q Vg is the voltage of the gate relative to the source.

4 14 =1, is the current into the drain terminal.

d S
lld + \igs— -
g b v, 9—"dF—b v,
| - Tld +
S d
NMOS PMOS

MOSFETs-A CMOS VLSI Design Slide 30

15



MOS Device Notation

0O NMOS Typically: 0 PMOS Typically

SV 2 0 SV, S0
Vg 20 Vg S0
1,20 *l,4<0
d S
l la Ve - _
+
9— b V, g b Vi
- - +
S d
NMOS PMOS
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MOS I-V Characteristics

dIn Linear region, |, depends on:
» How much charge is in the channel
= How fast is the charge moving

a Ids = Qchannel /'t
= t = time for charge to transit channel

MOSFETs-A CMOS VLSI Design Slide 32
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Key Dimensions

—
w
e

Note: We often define A as

A=L/2,
% L —— when L is smallest possible
OrL=2A

t0X

%
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(]

(I Wy Iy Iy Oy

Calculating MOS I-V Relations

l4s = Charge_in_channel
| Transit time

T = transit times

Q = charge in transit

M = electron mobility

Cg = gate capacitance £, }(; L *){

E = electric field o

€ = permittivity of gate T |
dielectric <
MOSFETs-A CMOS VLSI Design Slide 34
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What's the Charge in the Channel?

U MOS gate structure looks like parallel plate capacitor while
operating in inversion
= Gate is “plate” on top
= Oxide in middle is dielectric

~~~~

—————————

gate

\\\\\\\\\\\\\\\@@@\ source| Ves T=C  Vou| drain
&§\\\\ Vs - channel '+ Vv,

L _ﬁ SI0, gate oxide o iy, —0F
ptype body (good insulator, ¢, = 3.9) p—type bOdy
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Channel Charge

0 MOS structure looks like parallel plate capacitor while
operating in inversion
= Gate — oxide — channel
O Qepanner = CV
Q hoat’s C’?)

.........

source Vgs -rcg ng drain

v v. | o -V

v s channel d
L n+ + n+

* L SiO, gate oxide T~V
e (good insulator, ¢, = 3.9) p-type body
p-type body
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Channel Charge

U MOS structure looks like parallel plate capacitor while
operating in inversion
= Gate — oxide — channel
a Qchannel =CVv
/D"c"'_"'Qg = £qWLtG, = CoWL  Coy = €6, / 1y
Q v=2?}

—————————

\\\\\\\\\§ source| Ves TCQ Voa| drain
g &_V §\‘ Ve n+ '- \Cfl"":;‘”el/ -+ n+ Ve
D-typ:body n (gOOdS iiSsQu?::c?r,O::i 3.9) p-typedi)o dy
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Channel Charge

0 MOS structure looks like parallel plate capacitor while
operating in inversion
= Gate — oxide — channel
a Qchalnnel =CV
O C=C,=¢,WL/t, =C,WL
a vs= Vge,—_M,--\
“hat’ 2 C,,=¢,/t
0 But Q\(I:nat 3 ng:?" ox ox ! tox
gate
source Vgs -rcg ng drain
w = T =
v Vs channel Vy
t nt -\, I+ n+
A L SiO, gate oxide Vds
e (good insulator, ¢, = 3.9) p-type body
p-type body
MOSFETs-A CMOS VLSI Design Slide 38
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What is V.7 (The Simple Version)
gate

Vv C, V

source| “gs g gd | drain
Vs | channel '+ Vy
n+ - —V, — n+
p-type body

O On the left of channel, its Vgs
O On the right of channel, Vg =V, + V4 or Vg =V — Vi
QO Let’s compute the average: (Vgq + (Vg5 — Vye))2 =V =V, /2
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Channel Charge

0 MOS structure looks like parallel plate capacitor while
operating in inversion
= Gate — oxide — channel
a Qchalnnel =CV
O C=C,=¢,WL/t, =C,WL
a vs= Vgc -V, = (Vgs - V4/2) -V,
O Q= Cou, WL *((Vyq - Vge/2) - V) Cox = €ox | tox
gate
source Vgs -rcg ng drain
w = T =
LV Vs channel Vy
= nt S\, _— + n+
L SiO, gate oxide ds
e (good insulator, ¢, = 3.9) p-type body
p-type body
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Now Let’'s Compute Carrier Velocity

Charge is carried by e-
Electrons move along source-drain E-field lines toward + side

Carrier velocity v proportional to lateral E-field between
source and drain

U v =pE ucalled mobility

o '_q

source e > drain

000
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Si Electron and Hole Mobility

10° 2000

200 K
1000

300 K

400K
500 K

" " " "

10" 10° 10° 107 10° 10° 10° 10° 10” 10° 10* 107
. 3

Donor Density N_(cm) Acceptor density M, (em™)

Electron Mobility 2-3X Hole Mobility

Mobility u (cm?V''s™)
=
g

Mobility u (cm*V's™)

Significant Temperature Sensitivity (mobility drops)
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Carrier velocity

U Charge is carried by e-

U Carrier velocity v proportional to lateral E-field between
source and drain

O _v=uE p called mobility
@ E=?0

________

),
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Carrier velocity

O Charge is carried by e-

O Carrier velocity v proportional to lateral E-field between
source and drain

a v=puE u called mobility

Q E=V,J/L

U _Time faor carrier to cross channel:
(L= t=2? )

—————————

L
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Carrier velocity

U Charge is carried by e-

U Carrier velocity v proportional to lateral E-field between
source and drain

O v=ypE p called mobility
O E=V,J/L
Q Time for carrier to cross channel:
= t=L/v
for '___r
source e > drain
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Linear Region: Putting It All

Together
D Ids = Qchannel /t Valld for-
- Qchannel = CV ;
. C =g, WLIt,, * Vgs >V,
- V=V, -V,-Ve2 | ¢ ButV, relatively small
= t=L/v
« v=pE
«- E=V,/L

O Thus: ly, = (6oWL/t0,) (Vs — Vi — Vigel2 J(LI(u#V /L)
Q Or lgs = (Sox*ultox)*(WlL),*(‘vgs - Vi T vdsI2 )*Vds
1 1

B Ver
Where:
a orlys = B(Var = Vgs/2 )*V g |: 8- Conocimy
GT gs t
MOSFETs-A CMOS VLSI Design Slide 46
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Saturation Region

QO V.. Drain Saturation Voltage
= V4 value where channel no longer inverted in vicinity of drain
= Saturation typically when Vi, = Vg =V, -V,

D ThUS, Vdsat: = VGT = ng - Vt

O Substituting in prior equation: Iy, = B(Vgr — Vgsat!2 )*Vysat )

lysat = BVgr? / 2

Where:
* COX = 8OX / tOX
o B = (e, Wt )*(W/L)=C_ F*u*W/L

Qo

-

¢ VGT = Vgs - Vt
¢ Vdsat = VGT
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Summary: Long Channel Model

William Shockley 15t order transistor models
1952 A Unipolar Field Effect Transistor

0, Vgs <V, Cutoff
lgs =] BVor = Vas/2)"Vas: Vs > Viand Vg, < Vg Linear
BVgi? /2, Ve > Ve Saturation
Where:

COX = EOX / tOX
¢ B = (60 Wty *(W/L) = Co WL

QO
tmy

L] VGT = VgS —_ Vt 4 SiO, gate oxide

. V —_ V nt (good insulator, ¢, = 3.
dsat - GT p-type body
MOSFETs-A CMOS VLSI Design Slide 48
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—— a-power law

lgs(UA)
800 -

600 -

400 -

200 ~

0 0.2 04 0.6 0.8

FIGURE 2.16 Comparison of o-power law model with
simulated transistor behavior
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Knobs for Designers to Change

O Typically logic designer has no control over
= g, : thin ox permittivity
= t,,: thickness of oxide
= u: mobility
= V,: threshold voltage
O Only knobs left to change
= Overall V,: but usually selected at system level
= L: length — but there is a minimum (2A)

mm) - \W: width
“

A L SiO, gate oxide
(good insulator, &, = 3.9)

p-type body
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Example: Doubling W

Approximately Doubles Current

2500 2500
NMOS Device s NMOS [Device | | 5
45 4.5
2000 2000
4 4
35 | 35
3 3
g 1500 T 2 1500 —i7 in
'l; ™7 % -2
= 1000 I | =g ~ 1000 1S
=1 | 1
J ~m-05 : ~®=05
500 500 —— it —
. |
i 1
L L b N
ey 7 ==co
o 1 2 3 4 5 6 0 1 2 3 4 5
Vds (Volts) Vds (Volts)
W = Length W = 2* Length
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More Careful Accounting for Channel

Voltage Variation
Ves > V1 Vs

|2 dQ_ mtidk —V(x))%(vg\

T tox
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Accounting for Channel Voltage Variation
Ves > V1 Vs

I ldx = ”:W V]ﬁ(\/GS —V, V)V
0

0 oX
| is independent of x

IL =

AV V..
,Ut ((VGS _VT )VDS _%S]

W Vo’
|='l: L [(VGS_VT)VDS_ ZSJ

0X
The Shockley Equation
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Re-writing the Schockley Equation
Ves > Vr Vs
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NMOS |-V Summary
(The Same Equations as Before)

Q William Shockley 15t order transistor models
= 1952 A Unipolar Field Effect Transistor

0 Vi <V, cutoff

d :<ﬂ(Vgs v, -Ve/ )vds V, <V, linear

g(Vgs —Vt)2 Vi >V, saturation
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