Introduction to CMOS VLSI Design

MOSFETs Lecture B

Peter Kogge
University of Notre Dame
Fall 2015, 2018

Based on material from
Prof. Jay Brockman, Joseph Nahas: University of Notre Dame
Prof. David Harris, Harvey Mudd College
http://www.cmosvlsi.com/coursematerials.html

Outline

- **Lecture A**
 - IEEE Notation and IV curves
 - MOS Gate
 - Water Model
 - nMOS Ideal Long Channel I-V Model
 - Supplementary Material – More Careful Computation

- **Lecture B**
 - Reading the I-V Curves
 - Sample Technologies
 - Load Lines and an NMOS Inverter
 - A CMOS Inverter

- **Lecture C**
 - DC Transfer Curves for an Inverter
 - Ideal vs Real
 - Real-World Effects
Reading the IV Curve

Summary: Long Channel Model

William Shockley 1st order transistor models
1952 A Unipolar Field Effect Transistor

\[
I_{ds} = \begin{cases}
0, & V_{gs} \leq V_t, \text{Cutoff} \\
\beta(V_{GT} - V_{ds}/2) \cdot V_{ds}, & V_{gs} > V_t \text{ and } V_{ds} < V_{dsat} \text{ Linear} \\
\beta V_{GT}^2 / 2, & V_{ds} > V_{dsat} \text{ Saturation}
\end{cases}
\]

Where:
- \(C_{ox} = \epsilon_{ox} / t_{ox} \)
- \(\beta = (\epsilon_{ox} \cdot \mu / t_{ox}) \cdot (W/L) = C_{ox} \cdot \mu \cdot W/L \)
- \(V_{GT} = V_{gs} - V_t \)
- \(V_{dsat} = V_{GT} \)

[Diagram of MOSFET with parameters labeled]
FIGURE 2.16 Comparison of \(\alpha \)-power law model with simulated transistor behavior.

pMOS Curve is in Opposite Quadrant

Characteristic Curves for pMOSFET

http://www.physics.csbsju.edu/trace/ipMOSFET5.plot.gif
Reading The Graph

<table>
<thead>
<tr>
<th>Vgs(V)</th>
<th>Vds(V)</th>
<th>Ids(uA)</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• $\beta = 242$
• $V_t = 0.7$

Understanding The I-V Graph: Fixed V_{gs}

- AMI 600nm example
 - $t_{ox} = 100 \text{ Å} = 10 \text{ nm}$
 - $\mu = 350 \text{ cm}^2/\text{V} \cdot \text{s}$
 - $V_t = 0.7 \text{ V}$
- If we fix V_{gs}, the device looks like a non-linear resistor
 - E.g. $V_{gs} = 4 \text{ V}$
 - In saturated region: $\approx 1.25 \text{ mA}$ constant current
 - In linear region: $\approx 2.5V/0.00125 \text{ mA} = 2K\Omega$
Let's Check the Equation:
Fixed V_{gs}

\[
I_{ds} = \begin{cases}
0, & V_{gs} < V_t \text{ Cutoff} \\
\beta(V_{gs} - V_t - V_{ds}/2) \cdot V_{ds}, & V_{gs} > V_t \text{ and } V_{ds} < V_{dsat} \text{ Linear} \\
(-\beta/2)\cdot V_{ds}^2 + \beta(V_{gs} - V_t) \cdot V_{ds}, & V_{ds} > V_{dsat} \text{ Saturation} \\
\beta((V_{gs} - V_t)^2)/2, & V_{ds} > V_{dsat} \text{ Saturation} \\
\end{cases}
\]

Understanding The I-V Graph:
Fixed V_{ds}

- Same technology as before
- If we fix V_{ds}, then I_{ds} is a function of V_{gs}

<table>
<thead>
<tr>
<th>V_{gs} (V)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{ds} (uA)</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>77</td>
<td>204</td>
<td>391</td>
<td>628</td>
<td>870</td>
<td>1111</td>
<td>1353</td>
<td>1595</td>
</tr>
</tbody>
</table>

Interesting Region: almost linear voltage to current conversion
Let’s Check the Equation:
Fixed V_{ds}

$$I_{ds} = \begin{cases}
0, & V_{gs} < V_t \text{ Cutoff} \\
\beta(V_{gs} - V_t - V_{ds}/2)V_{ds}, & V_{gs} > V_t \text{ and } V_{ds} < V_{dsat} \text{ Linear} \\
\beta((V_{gs} - V_t)^2/2), & V_{ds} > V_{dsat} \text{ Saturation} \\
= (\beta/2)V_{gs}^2 - (\beta V_t)V_{gs} + (\beta/2)V_t^2
\end{cases}$$

Knobs for Designers to Change

- Typically logic designer has no control over
 - ε_{ox}: thin ox permittivity
 - t_{ox}: thickness of oxide
 - μ: mobility
 - V_t: threshold voltage

- Only knobs left to change
 - Overall V_{dd}: but usually selected at system level
 - L: length – but there is a minimum (2λ)

- W: width
Example: Doubling W Approximately Doubles Current

Sample Technologies
Approximating the ND Process

- $L = 2000\text{nm}$
- $W/L = 10$
- $t_{ox} = 2\text{Å} = 20\text{nm}$
- $\mu = 350\text{cm}^2/\text{V}\cdot\text{s}$
- $V_t = 0.5\text{V}$
- $\varepsilon_r = 3.9$

Real devices seem to have extra “Source Resistance” of about 120 ohms. Explains the difference.

600nm AMI Semiconductor

- $t_{ox} = 100\text{Å} = 10\text{nm}$
- $\mu = 350\text{cm}^2/\text{V}\cdot\text{s}$
- $V_t = 0.7\text{V}$
- $\varepsilon_r = 3.9$
- $\varepsilon_0 = 8.85\cdot10^{-14}\text{F/cm}$
- $W/L = 4/2$

$$\beta = \frac{\mu W}{t_{ox}} = \frac{350 \cdot 8.85 \cdot 10^{-14}}{10 \cdot 10^{-3}} \frac{W}{L} = 120 \frac{W}{L} \left(\frac{\mu A}{V^2} \right)$$
180 nm NMOS Characteristics

\[I_{d} = 0.24 \left(V_{gs} - V_{t} \right)^2 \left(\frac{m_{A}}{V_{T}} \right) \]

- **Vgs = 5 V**
- **Vgs = 4 V**
- **Vgs = 3 V**
- **Vgs = 2 V**
- **Vgs = 1 V**

- \(I_{ds} (mA) \)
- \(V_{ds} (V) \)

180 nm pMOS I-V

- All dopings and voltages are inverted for pMOS
- Mobility \(\mu_p \) is determined by holes
 - Typically 2-3x lower than that of electrons \(\mu_n \)
 - 120 cm²/Vs in AMI 0.6 μm process
- Thus pMOS must be wider to provide same current
 - In this class, assume \(\frac{\mu_n}{\mu_p} = 2 \)
The 65nm Process from p.67

- $t_{ox} = 10.5 \text{ Å} = 1.05 \text{ nm}$
- $\mu_N = 80 \text{ cm}^2/\text{V}\cdot\text{s}$;
- $V_t = 0.3 \text{ V}$
- $W/L = 2$
- $\varepsilon_r = 3.9$

Load Lines and An NMOS Inverter
An NMOS and a Resistor

- Basic Resistor: $V_R = R \cdot I_R$
- But in the Circuit:
 - $I_d = I_R$
 - $V_R = V_{DD} - V_{ds}$
- Thus: $I_d = \frac{(V_{DD} - V_{ds})}{R}$

V_{ds} I_d V_{dd}/R

Id, V_{ds} MUST be on this line, Regardless of V_{gs}

Finding The Circuit I-V

To compute how circuit responds:
- Overlay resistor on transistor IV
- For each V_{gs}, find intersection

<table>
<thead>
<tr>
<th>V_{gs}</th>
<th>I_d (uA)</th>
<th>V_{ds} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>4.978</td>
</tr>
<tr>
<td>1.5</td>
<td>77</td>
<td>4.846</td>
</tr>
<tr>
<td>2</td>
<td>204</td>
<td>4.592</td>
</tr>
<tr>
<td>2.5</td>
<td>391</td>
<td>4.218</td>
</tr>
<tr>
<td>3</td>
<td>639</td>
<td>3.722</td>
</tr>
<tr>
<td>3.5</td>
<td>947</td>
<td>3.106</td>
</tr>
<tr>
<td>4</td>
<td>1238</td>
<td>2.524</td>
</tr>
<tr>
<td>4.5</td>
<td>1400</td>
<td>2.2</td>
</tr>
<tr>
<td>5</td>
<td>1550</td>
<td>1.9</td>
</tr>
</tbody>
</table>

NMOS Device with R Pullup

R=2000 Ω
What is interesting about V_{gs}, $V_{ds} = 2.5V$?

R = $V_{dd}/(2I_{ds})$

V_{gs}	V_{ds}	Ids (uA)
0 | 5 | 0.7 |
5 | 0.7 | 5 |

R = 6.4K

2.5V/391nA = 6.4K

R = 1.5K

R = 25K

Picking a Resistor Value
What Is the $V_{gs} = “1”$ Current?

This represents a static power of ~3mW for just one gate!

A CMOS Inverter
Now We Have 2 Transistors: Questions

- Do we need load lines to determine output voltages if input is:
 - Either “0” (Ground)
 - Or “1” (Vdd)?
- Is there any static power if input is either “0” or “1”? Why then do we care about size (W/L) of each transistor?

A CMOS Inverter in Context

- Downstream circuits look like a capacitor on inverter output:
 - All connected transistor gates
 - Wiring
 - Other (addressed later)
- Thus Y looks like RC circuit:
 - With P-type the “pull-up” R
 - And N-type the “pull-down” R
- To make rise and fall times approximately symmetric:
 - Want I_{dsat} of N & P types to be equal
Let's Look at the Equations

- $V_{dd} = V_{gsp} - V_{gsn}$
- $V_{dd} = V_{dsn} - V_{dsp}$
- To make currents equal: $I_{dp} = -I_{dn}$

Let's Connect the N and P I-V Curves

Tough to find where equations satisfied.
To Match Equations: Flip P-type IV and Move Right

- Above is for identically sized N and P transistors
- Remember: N and P mobility different

What If We Make P type Wider by Same Factor as Mobility Difference
Rule of Thumb

- To equalize currents, make average I_{dsat} for Pull-Down and Pull Up networks equal
- Average difference in mobility is ~2
- Thus for inverter:
 - Make P-type twice as wide as N