
1

CMOS VLSI Design Slide 1Slide 1Slide 1

Introduction to
CMOS VLSI

Design

Quick Verilog

Lecture by Peter Kogge
Fall 2009, 2011, 2012, 2015, 2018

University of Notre Dame
Using some slides by Jay Brockman Notre Dame 2008,

and David Harris, Harvey Mudd College
http://www.cmosvlsi.com/coursematerials.html

Verilog

CMOS VLSI Design Slide 2Verilog Slide 2Verilog Slide 2

Levels of Design Modeling
 Structural: how a module is “wired together” from

simpler modules

– modules defined in terms of input and output ports

– “Calling” a module creates a new instance

• With “arguments” that are named wires.

 Behavioral: how outputs change as function of inputs

– Key statement type: assignment

• Continuous assignment – for driving a wire

• Always assignment – for driving a latch

 Physical: layout of devices on chip

 Netlist: list of all ports connected to each wire

2

CMOS VLSI Design Slide 3Verilog Slide 3

Verilog
 Verilog: one of two popular Hardware Description Languages

(HDL)

– VHDL is the other

 Naturally modular:

– Define new module type in terms of simpler types

– When used, creates a new “instance” of module

– With wire names between “ports” of instance

 Suitable for all levels of models:

– Behavioral: with no other resources needed

– Structural: with library of technology-specific modules

– Physical: as with structural but with “place & route” to

• Place individual instances on 2D chip surface

• Route wires between instance ports using chip metal

CMOS VLSI Design Slide 4Verilog Slide 4

In Following
 Courier text = sample Verilog code

 Green courier = sample use of a keyword

 <xxx> = a general syntactic term

3

CMOS VLSI Design

MIPS8 Overview

Verilog Slide 5

CMOS VLSI Design8bit MIPS Slide 6Slide 6Slide 6

MIPS Architecture
 Example: subset of MIPS processor architecture

– Drawn from Patterson & Hennessy

 MIPS is a 32-bit architecture with 32 registers

– Consider 8-bit subset using 8-bit datapath

– Only implement 8 registers ($0 - $7)

– $0 hardwired to 00000000

– 8-bit program counter

 David Harris has developed labs to implement

– Uses Electric CAD tools

– Illustrate the key concepts in VLSI design

4

CMOS VLSI Design8bit MIPS Slide 7Slide 7Slide 7

Instruction Set

CMOS VLSI Design8bit MIPS Slide 8Slide 8Slide 8

Instruction Encoding
 32-bit instruction encoding

– Requires four cycles to fetch on 8-bit datapath

format example encoding

R

I

J

0 ra rb rd 0 funct

op

op

ra rb imm

6

6

6

65 5 5 5

5 5 16

26

add $rd, $ra, $rb

beq $ra, $rb, imm

j dest dest

5

CMOS VLSI Design8bit MIPS Slide 9Slide 9Slide 9

MIPS Microarchitecture
 Multicycle architecture from Patterson & Hennessy

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15: 11]

M
u
x

0

1

M
u
x

0

1

1

Instruction
[7: 0]

Instruction
[25 : 21]

Instruction
[20 : 16]

Instruction
[15 : 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite[3:0]

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5: 0]

Instruction
[31:26]

Instruction [5 : 0]

M
u
x

0

2

Jump
addressInstruction [5 : 0] 6 8

Shift
left 2

1

1 M
u
x

0

3

2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

PCEn

ALUControl

CMOS VLSI Design8bit MIPS Slide 10Slide 10Slide 10

Multicycle Controller

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp= 10

RegDst = 1
RegWrite

MemtoReg = 0

MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst =0
RegWrite

MemtoReg =1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite3

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch

Instruction decode/
register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

(Op = 'LB ') or (Op = 'SB ') (Op = R-type)

(O
p

=
'B

EQ
')

(O
p

=
'J

')

(O
p

=
'S

B
')

(O
p

=
'L

B
')

7

0

4

121195

1086

Reset

MemRead
ALUSrcA = 0

IorD = 0
IRWrite2

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

1
MemRead

ALUSrcA = 0
IorD = 0
IRWrite1

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

2
MemRead

ALUSrcA = 0
IorD = 0
IRWrite0

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

3

6

CMOS VLSI Design8bit MIPS Slide 11Verilog & MIPS0: Slide 11Slide 11

MIPS Floorplan

datapath
2700 x 1050

(2.8 M2)

alucontrol
200 x 100

(20 k2)

zipper 2700 x 250

2700

1690

wiring channel: 30 tracks = 240

mips
(4.6 M2)

bitslice 2700 x 100

control
1500 x 400

(0.6 M2)

3500

3500

5000

5000

10 I/O pads

10 I/O pads

10 I/O
 pads

10 I/O
 pads

CMOS VLSI Design8bit MIPS Slide 12Slide 12Slide 12

MIPS Layout

7

CMOS VLSI Design8bit MIPS Slide 13Slide 13Slide 13

Fabrication & Packaging
 Tapeout final layout

 Fabrication

– 6, 8, 12” wafers

– Optimized for throughput, not latency (10 weeks!)

– Cut into individual dice

 Packaging

– Bond gold wires from die I/O pads to package

CMOS VLSI Design

Modules,
Structural Design,

and Netlists

Verilog Slide 14

8

CMOS VLSI Design

Signal Declarations
 wire <list-of-signal-names>;

– Each name in list is a separate net

• Treat as an electrical “wire”

• No “stored value”

• echoes whatever value is currently driving it to
all other terminals with no time delay

 reg <list-of-signal-names>;

– Each name treated like a “latch”

– “Stores” value last “assigned” to it
 parameter <name> = <value>

– Defines a constant value as in C const

Verilog Slide 15

CMOS VLSI Design Slide 16Verilog Slide 16Verilog Slide 16

Defining Modules in Verilog
 Module: defines a basic circuit with some input and

output signals
 module <module-name>(<port-list>);

<definitions of internal signals>;
<assignments to internal signals and output ports>;
endmodule

 <port-list>: list of circuit I/Os
– Each port is a named “wire” from/to a “pad”
– Input signals: input <name>,<name>….,
– Output signals: output <name>,<name>…,
– Signals that can be both: inout <name>,<name>…

9

CMOS VLSI Design Slide 17Verilog Slide 17Verilog Slide 17Slide 17

Example

module carry(input a, b, c,
output cout)

wire x, y, z;

and g1(x, a, b);
and g2(y, a, c);
and g3(z, b, c);
or g4(cout, x, y, z);

endmodule

a
b

a
c

b
c

cout

x

y

z

g1

g2

g3

g4

Verilog

defines new module type

3 internal nets

g1,…g4 instances of
other module types

associating net names
with ports builds internal
netlist

port description

CMOS VLSI Design

Alternative Port List

Verilog Slide 18

module carry(a, b, c, cout)
input a, b, c;
output cout;

wire x, y, z;

and g1(x, a, b);
and g2(y, a, c);
and g3(z, b, c);
or g4(cout, x, y, z);

endmodule

Sometimes easier to read

10

CMOS VLSI Design Slide 19Verilog Slide 19Verilog Slide 19Slide 19

Transistor-Level Model

a b

c

c

a b

b

a

a

b

coutcn

n1 n2

n3

n4

n5 n6

p6p5

p4

p3

p2p1

i1

i3

i2

i4

module carry(input a, b, c,
output cout)

wire i1, i2, i3, i4, cn;

tranif1 n1(i1, 0, a);
tranif1 n2(i1, 0, b);
tranif1 n3(cn, i1, c);
tranif1 n4(i2, 0, b);
tranif1 n5(cn, i2, a);
tranif0 p1(i3, 1, a);
tranif0 p2(i3, 1, b);
tranif0 p3(cn, i3, c);
tranif0 p4(i4, 1, b);
tranif0 p5(cn, i4, a);
tranif1 n6(cout, 0, cn);
tranif0 p6(cout, 1, cn);

endmodule

Verilog

Note: nets can have
more than 2 tie points

tranifl#(drain, source, gate)

CMOS VLSI Design

Defining Multi-wire Signals
 Often convenient to group set of signals under same

name as a vector

– E.g. a data bus
 Precede name by range specification [n:m]

– n-m+1 = total number of signals

– n: “number” given to left-most signal

– m: “number” given to right-most signal
 To access individual wire use <name>[i]

 To access subset of wires use <name>[i:j]

 E.g. input [7:0] memdata defines 8 bit bus

Verilog Slide 20

11

CMOS VLSI Design Slide 21Verilog Slide 21

Example 4-input Ripple
Adder

module four_bit_adder(input [3:0] a, b, input cin;
output [3:0] s, output cout);

wire [3:1] c;

fulladder fa0(a[0], b[0], cin, s[0], c[1]);

fulladder fa1(a[1], b[1], c[1], s[1], c[2]);

fulladder fa2(a[1], b[1], c[2], s[2], c[3]);

fulladder fa3(a[1], b[1], c[3], s[3], cout);
endmodule;

Note: “order” of instance statements in code is irrelevant

CMOS VLSI Design Slide 22Verilog Slide 22Verilog Slide 22

Types of Nets in Verilog
 Wire: a normal metal or poly line

• driven by some single output port
• Replicates signal at arbitrary # of input ports

 Tri: a tri-stated wire
– May be driven by multiple tri-stated output ports

 Supply0: ground
 Supply1: Vdd
 Wand: wired AND

– May be driven my multiple open collector drivers
 Wor: wired OR

– May be driven my multiple emitter-coupled drivers
 Triand, trior: similar to above but may be three-stateTri0:

resistor to ground
 Tri1: resistor to Vdd
 Trireg: models charge stored on a net

12

CMOS VLSI Design Slide 23Verilog Slide 23Verilog Slide 23

Verilog Value Types
 Scalar: (i.e. a single bit) may have values

– 0: signal is driven to ground
– 1: signal is driven high (typically to Vdd)
– X: signal value is unknown or conflicted
– Z: signal is “high impedance”

 Sized numbers written as <number>’<base><digits>
– <number> is the number of digits
– <base> is the base for the number representation

• B or b: binary
• O or o: octal
• H or h: hexadecimal
• D or d: decimal

– <digits>: string of digits in the specified base notation
 Unsized numbers: eliminate the <number>’

CMOS VLSI Design Slide 24Verilog Slide 24Verilog Slide 24

Value Examples

from W&H

13

CMOS VLSI Design8bit MIPS Slide 25Slide 25Slide 25

MIPS Block Diagram

datapath

controller
alucontrol

ph1

ph2

reset

memdata[7:0]

writedata[7:0]

adr[7:0]

memread

memwrite

op[5:0]

zero

pcen

regw
rite

irw
rite[3:0]

m
em

toreg

iord

pcsource[1:0]

alusrcb[1:0]

alusrca

aluop[1:0]

regdst

funct[5:0]

alucontrol[2:0]

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15: 11]

M
u
x

0

1

M
u
x

0

1

1

Instruction
[7 : 0]

Instruction
[25 : 21]

Instruction
[20 : 16]

Instruction
[15 : 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite[3:0]

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5 : 0]

Instruction
[31:26]

Instruction [5 : 0]

M
u
x

0

2

Jump
addressInstruction [5 : 0] 6 8

Shift
left 2

1

1 M
u
x

0

3

2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

PCEn

ALUControl

CMOS VLSI Design

High Level Verilog MIPS

Verilog Slide 26

14

CMOS VLSI Design

Verilog Execution Model

Verilog Slide 27

CMOS VLSI Design Slide 28

Verilog Execution Model (1)
 Module definitions define

– Input and output ports that can be wired to other
module

– Behavior: What happens in any instance when actual
inputs change

 Model construction defines multiple instances of
modules
– How they are wired together
– What to do “at time 0”

Verilog

15

CMOS VLSI Design Slide 29

Verilog Execution Model (2)
 At any point in time

– Compute values for all expressions that have been
“activated”

– Tag with time when changes should happen
– Sort updates by time

 To advance to next step
– Find updates with smallest time – make that the

“current time”
– Apply all updates
– See (via appropriate netlists) which circuits see

changes in inputs
– Compute new values, tag the updates, and repeat

Verilog

CMOS VLSI Design

Discrete Event Execution

Verilog Slide 30

Sorted (by time) list of
(time, port, new value)

Update current
time to soonest time

Follow net from
output port(s) that

changed to all
connected input ports

SoonestLatest

For each touched input port:
• Compute new output
• See if changed from previous
• Compute when change occurs

16

CMOS VLSI Design

Verilog Behavioral
Models

& Expressions

Verilog Slide 31

CMOS VLSI Design

Behavioral Models in
Verilog

 Normal Purpose:

– Simplify design process for “simple” logic

• ESPECIALLY STATE MACHINES

– Avoid doing detailed structural design early in the
design cycle

 Behavioral models act just like structural

– Mixed model designs can be simulated simply

 Tools exist for synthesizing a structural design from
behavior module

Verilog Slide 32

17

CMOS VLSI Design

A Behavioral Module

Verilog Slide 33

module <module-name>(<port-list>);

<declarations>

assign #<delay> <net-name> = <expression>;

endmodule
repeated multiple times

CMOS VLSI Design Slide 34Verilog Slide 34Verilog Slide 34

Distributing Signals: Nets
 Net: changes value whenever circuit driving it changes

– Carries a signal

– Most common – a wire
 assign #<delay> <net-name> = <expression>;

– Any change in expression changes value
assigned to net

– <expression>: functional combination of constants
and other signals

– < net-name>: name of net that “tracks” value of
expression

– #<delay>: optional “delay” from time expression
changes until time net signal changes

18

CMOS VLSI Design Slide 35Verilog Slide 35Verilog Slide 35

Operators in Expressions

from W&H

CMOS VLSI Design Slide 36Verilog Slide 36Verilog Slide 36Slide 36

Motivating Example

module fulladder(input a, b, c,

output s, cout);

Xor2 sum_1(a, b, s1);

Xor2 sum_2(s1,c, s);

carry c1(a, b, c, cout);

endmodule

module carry(input a, b, c,

output cout)

assign cout = (a&b) | (a&c) | (b&c);

endmodule

a b

c

s

cout carry
sum

s

a b c

cout

fulladder

Which is:
• Structural?
• Behavioral?

Verilog

19

CMOS VLSI Design Slide 37Verilog Slide 37Verilog Slide 37Slide 37

Example: Carry Logic –
Standard Cell Gates

 assign cout = (a&b) | (a&c) | (b&c);

a
b

a
c

b
c

cout

x

y

z

g1

g2

g3

g4

Verilog

CMOS VLSI Design Slide 38Verilog Slide 38Verilog Slide 38Slide 38

Example: Carry Logic -
Transistors

 assign cout = (a&b) | (a&c) | (b&c);

a b

c

c

a b

b

a

a

b

coutcn

n1 n2

n3

n4

n5 n6

p6p5

p4

p3

p2p1

i1

i3

i2

i4

Verilog

20

CMOS VLSI Design8bit MIPS Slide 39Slide 39Slide 39

MIPS Datapath
 Multicycle architecture from Patterson & Hennessy

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15: 11]

M
u
x

0

1

M
u
x

0

1

1

Instruction
[7: 0]

Instruction
[25 : 21]

Instruction
[20 : 16]

Instruction
[15 : 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite[3:0]

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5: 0]

Instruction
[31:26]

Instruction [5 : 0]

M
u
x

0

2

Jump
addressInstruction [5 : 0] 6 8

Shift
left 2

1

1 M
u
x

0

3

2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

PCEn

ALUControl

CMOS VLSI Design8bit MIPS Slide 40Slide 40Slide 40

Standard Cell Library
 Uniform cell height

 Uniform well height

 M1 VDD and GND rails

 M2 Access to I/Os

 Well / substrate taps

 Exploits regularity

21

CMOS VLSI Design8bit MIPS Slide 41Slide 41Slide 41

Slice Plans
 Slice plan for bitslice

– Cell ordering, dimensions, wiring tracks

– Arrange cells for wiring locality

CMOS VLSI Design8bit MIPS Slide 42Slide 42Slide 42

MIPS Datapath
 8-bit datapath built from 8 bitslices (regularity)

 Zipper at top drives control signals to datapath

22

CMOS VLSI Design

MIPS Verilog DataPath (1)

Verilog Slide 43

CMOS VLSI Design

MIPS Verilog Data Path (2)

Verilog Slide 44

23

CMOS VLSI Design8bit MIPS Slide 45Slide 45Slide 45

MIPS ALU
 Arithmetic / Logic Unit is part of bitslice

CMOS VLSI Design

Behavioral ALU

Verilog Slide 46

24

CMOS VLSI Design

Verilog Procedural
Assignments

Verilog Slide 47

CMOS VLSI Design Slide 48

Continuous Assignments
 assign statements are “continuous”
 Written once, executed “continuously”
 Any changes in right hand side immediately

reflected in left-hand signal
– Delayed in time perhaps by delay

 If multiple assigns in a block,
– execution is order independent

Verilog

25

CMOS VLSI Design Slide 49

Procedural Assignments
 Sometime we want to execute statements

procedurally (like a C program), i.e.
– Start statements at some point in time
– And then in some order
– Especially important for controlling registers

 Two kinds of such behavior
– Single pass behavior is executed only once

• At initialization
– Cyclic behavior is triggered whenever

“something” happens
• Where “something” can be defined in advance

 Need registers to capture values between changes

Verilog

CMOS VLSI Design Slide 50Slide 50

Registers
 Verilog registers much like C variables

– Once assigned a value, they keep it

– Until another value is assigned
 Defined by: reg [<msb>:<lsb>] <reg-name>;

– If no [:] then default size is 1 bit

– Initial value is “x”

 Typically assignments tied into events like clocks

Verilog

26

CMOS VLSI Design Slide 51

Procedural Assignments
<reg-name> = <expression>;

 Note: no “assign”

 When statement executed, register takes on value
from expression

– Actually an update event is scheduled

 Update event is done BEFORE next statement in
program order

Verilog

CMOS VLSI Design Slide 52

A Level-Sensitive D Latch
1

0

D

CLK

Q
CLK

CLKCLK

CLK

DQ Q

Q

module D_latch(input D, CLK, output Q);

Q = CLK ? D : Q;

endmodule

Verilog

27

CMOS VLSI Design Slide 53

A D Latch with a Reset

module D_latch_wReset(input D, CLK, Reset,
output Q);

Q = Reset ? 0 (CLK ? D : Q);

endmodule

Verilog

CMOS VLSI Design Slide 54

Program Blocks
 Often more than 1 statement needs to be executed

in a time-sensitive assignment

 Such statements grouped into blocks

– <statement>; … <statement>;
 begin <statement-block> end;

– All statements in block are executed in order

• i.e. one at a time top to bottom

– Assignment statements within block are said to
be blocking assignments

• Next one cannot start until last completes
 fork <statement-block> join;

– All statements in block are executed in parallel

• i.e. in any order
Verilog

28

CMOS VLSI Design Slide 55

Single Execution Behavior
 Execute only at specific time, i.e. time=0
 Typically used by test benches for startup

initial <statement>;

 Example:
initial begin
Reset = 0;
#10 Reset = 1;
#5 Reset =0;

end

What is the waveform?

Verilog

CMOS VLSI Design Slide 56

Controlling Cyclic Behavior
 Statement to be executed at specific times

– E.g. at clock pulses
always @(<sensitivity list>) <statement>

 @ is optional event control operator

 <sensitivity-list> is list of signal names
– @* means use all nets & variables read by procedure’s

statements

 Whenever any one of signals in sensitivity-list changes,
<statement> is executed

– And only then

 What kind of change is immaterial, unless signal name
preceded by:
– posedge: execute only on a 0 to 1

– negedge: execute only on a 1 to 0

Verilog

29

CMOS VLSI Design Slide 57

Non-blocking Assignments
 Use of “<=“ instead of “=“ in assignment makes

statement execute concurrently with later statements
<register> <= <expression>;

– left-hand side MUST be a register
 Order of such assignments is immaterial;

– They ALL HAPPEN AT ONCE!
 Better match to real circuits

always @(posedge clock)
begin
reg1 <= expr1;
reg2 <= expr2;
…
end

All expressions evaluated
at same time;
then all assignments happen
at same time

Verilog

CMOS VLSI Design Slide 58

Example: Clock Generation

Reg clk;

always
begin

clk <= 1;
5;
clk <= 0;
5;

end

Verilog

schedules a change to clk “now”

schedules a change to clk
in 5 time units

30

CMOS VLSI Design

Assignment Summary
 Continuous assignment:

– assign #<delay> <net-name> = <expression>

 Procedural assignment:
– <register> = <expression>;

 Non-blocking assignment:
– <register> <= <expression>;

Verilog Slide 59

CMOS VLSI Design Slide 60

Finite State Machines
Combinational
Logic

State (Register)

Inputs Outputs

Next
State

Clock

module FSM(input clock, In1, …Inn, output O1, …Om);

reg state, next_state;

always @(posedge clock)
begin
state <= next_state;
…
Code that does something like next_state <= <expression>;
…

end

Verilog

31

CMOS VLSI Design8bit MIPS Slide 61Slide 61Slide 61

Multicycle Controller

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp= 10

RegDst = 1
RegWrite

MemtoReg = 0

MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst =0
RegWrite

MemtoReg =1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite3

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch

Instruction decode/
register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

(Op = 'LB ') or (Op = 'SB ') (Op = R-type)

(O
p

=
'B

EQ
')

(O
p

=
'J

')

(O
p

=
'S

B
')

(O
p

=
'L

B
')

7

0

4

121195

1086

Reset

MemRead
ALUSrcA = 0

IorD = 0
IRWrite2

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

1
MemRead

ALUSrcA = 0
IorD = 0
IRWrite1

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

2
MemRead

ALUSrcA = 0
IorD = 0
IRWrite0

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

3

CMOS VLSI Design

MIPS VERILOG CONTROL
LOGIC

 Next: list of constants to define machine states

 Then an “always” sensitive to rising edge of clock

– Embedded case statement

– One case per state

– Determines what new state should be at end of this clock

 Then an “always” sensitive to any change in values

– Embedded case statement

– Each case specifies control signals to dataflow & memory

Verilog Slide 62

32

CMOS VLSI Design

More Syntax

Verilog Slide 63

CMOS VLSI Design Slide 64

Memory
reg <word-size> <memory-name> <mem-size>…<mem-size>;

 <word-size> is [<msb>:<lsb>]

 <mem-size> is [<low-index>:<high-index>]

 Example: define register d_array as 2D array of 16 bit words
reg [15:0] d_array [0:127][0:255]

 Selecting a word from an array:

– Assume a_byte is an 8 bit set of wires
a_byte = d_array[64][32][12:5];

– takes 8 bits from 32nd column of 64th row

Verilog

33

CMOS VLSI Design Slide 65

Other Verilog Constructs
 Comments:

– Single line: // …

– Block: /* …. */

 Identifiers:

– start with letter or _

– follow by letters, digits, _, or $

– case sensitive

Verilog

CMOS VLSI Design Slide 66

If Statement

 else is optional

 nesting permitted, as in else if ….

if (<expression>)

<then_statement>

else <else_statement>

end

Verilog

34

CMOS VLSI Design Slide 67

Case Statement

 <case_item> is a constant that is matched against
that from the <expression>)

– If match, then do the <case_item_statement>

• And exit case statement after completion

– If not, try next case
 default is optional for no matches

case (<expression>)
<case_item>: <case_item_statement>
…
default: <case_item_statement>

endcase

Verilog

CMOS VLSI Design Slide 68

For Statement

 <initial_assignment> and <update_statement> are
some form of assignment

 All iterations of <loop-statements> conceptually
done AT SAME TIME

for (<initial_assignment>;
<condition-expression>;
<update_statement>)

begin
<loop-statements>
end

Verilog

35

CMOS VLSI Design Slide 69

Other Loops

 All iterations of <loop-statements> conceptually
done AT SAME TIME

repeat (<expression>)
begin
<loop-statements>
end

while (<condition>)
begin
<loop-statements>
end

wait (<expression>) <statement>

Verilog

CMOS VLSI Design Slide 70

Timescale
 ‘timescale <time_unit>/<time_precision>

– <time_unit> and <time_precision> of form:

• <number> <space> <unit>
• with <unit> as s ms us ns ps fs

 From this point on:

– for delays: 1 time unit = <time_unit>

– for precision of internal time calculations: use
<time_precision>

Verilog

36

CMOS VLSI Design Slide 71

Module Instantiation
Options

 Previously

<module-type> <instance-name> (<list-of-signal-names>);

 In place of <list-of-signal-names>, use list of
.<port-name>(<net-name>)

 Optionally add #(<parameter_assignment_list>) after
<module-type>

– Associate values with parameters within module
definition

– Overwrites parameter <name> = <value> inside
definition

Verilog

CMOS VLSI Design Slide 72

More
(See Quick Reference Card)

 Builtin modules: and, or, nand, nor, xor,xnor

– One output (first argument)

– One or more inputs (rest oft arguments)
 $display statement: verilog eqvt of printf

– $display (<format string>);

• (“ … text …”, <list of var-names>)
– %<format-code> in text says how to format “next” var

in list
– $time is current time

– executed as any other statement in a block

– references variable values AS THEY ARE THEN

see http://www.hpcc.ecs.soton.ac.uk/hpci/tools/vlogref.pdf

Verilog

37

CMOS VLSI Design

More Examples

Verilog Slide 73

CMOS VLSI Design Slide 74Slide 74

Typical Design
 File with list of module definitions
 Typically first one is a testbench

– Glues together other pieces in a way that allows appropriate operation
to be demonstrated

– Includes initial code to start up & reset system
– Includes code to generate clocks & other common control signals

module TestBench(); \\ no ports
reg <in-list>; \\ all input ports to DUT
wire <out-list>; \\ all output ports from DUT

module Device_Under_Test(input <in-list>, output <outlist>);
…

endmodule;

initial begin
code to change values of regs in <in-list>

end;

endmodule;

Verilog

38

CMOS VLSI Design Slide 75Verilog Slide 75Verilog Slide 75

A Behavioral Full Adder

module fulladder(input a, b, cin, output s, cout);
wire prop;
assign prop = a ^ b;
assign s = prop ^ cin;
assign cout = (a & b) | (cin & (a | b);

endmodule

AND OR

a
b
cin

s
cout

fulladder

Note: “order” of assigns in code is irrelevant

CMOS VLSI Design Slide 76

Example: A 4 bit Shift Register

Module shiftreg(input E, clk, reset,
output D, C, B, A);

reg A, B, C, D; // note these output port defined to be regs
always @(posedge clk or posedge reset)
begin
if (reset) begin A=0;B=0;C=0;D=0:E=0; end
else begin

A = B;
B = C;
C = D;
D = E;
end

end

E D C B A

clk
reset

What happens if we reorder these?

Verilog

39

CMOS VLSI Design Slide 77

Repeat Shift Register Example:

Module shiftreg(input E, clk, reset,
output reg D, C, B, A);

always @(posedge clk or posedge reset)
begin
if (reset) begin A<=0;B<=0;C<=0;D<=0:E<=0; end
else begin

A <= B;
B <= C;
C <= D;
D <= E;
end

end

E D C B A

clk
reset

Now what happens
if we reorder these?

Note simplified syntax

Verilog

CMOS VLSI Design Slide 78

Finite State Machines
Combinational
Logic

State (Register)

Inputs Outputs

Next
State

Clock

module FSM(input clock, In1, …Inn, output O1, …Om);
reg state, next_state;
parameter … statei = ‘bxxxx;
always @(posedge clock)
begin
state <= next_state;
case (state)

…
statei: begin next_state<=statej; Ok <= … end;
…

end

Verilog

