
CSE 322 1802.1 Kogge, ND, 2/11/08

CSE/EE 322: Computer Architecture II
Spring 2008

A Case Study: The RCA 1802
(The Microprocessor that went to Jupiter)

Peter M. Kogge

CSE 322 1802.2 Kogge, ND, 2/11/08

References
Intersil Data Sheet: “CDP1802A, CDP 1802AC,
CDP1802BC CMOS 8-bit Microprocessors”

http://homepage.mac.com/ruske/cosmacelf/cdp1802.pdf

A Wikipedia summary
http://en.wikipedia.org/wiki/RCA_1802

Programming the 1802
http://www.ittybittycomputers.com/IttyBitty/ShortCor.htm

Die Phote of RCA 1802 chip
http://www.cpu-world.com/CPUs/1802/die/L_RCA-CDP1802.jpg

The picture of the Galileo Jupiter computer board
http://history.nasa.gov/computers/p199.jpg

CSE 322 1802.3 Kogge, ND, 2/11/08

Why Is This an Interesting Microprocessor
One of 1st microprocessors to be designed in a very
regular fashion

With a register file at its heart

Aspects of several different types of ISAs

Built from Silicon-on-Sapphire (SOS)
Makes it inherently Radiation-Hard – good for space

Went to Jupiter & Beyond

CSE 322 1802.4 Kogge, ND, 2/11/08

General Characteristics

CSE 322 1802.5 Kogge, ND, 2/11/08

The Chip

CLOCK
~WAIT

~CLEAR
Q

SC1
SC0

~Memory Read
DATA 7
DATA 6
DATA 5
DATA 4
DATA 3
DATA 2
DATA 1
DATA 0

GROUND
N2
N1
N0

VSS

Vdd
~CRYSTAL
~DMA-IN
~DMA-OUT
INTERRUPT
~Memory Write
Timing Pulse A
Timing Pulse B
MEMORY ADDRESS 7
MEMORY ADDRESS 6
MEMORY ADDRESS 5
MEMORY ADDRESS 4
MEMORY ADDRESS 3
MEMORY ADDRESS 2
MEMORY ADDRESS 1
MEMORY ADDRESS 0
~External Flag 1
~External Flag 2
~External Flag 3
~External Flag 4

I/O Address

Current State

Note: a “~” in front of a signal means that it is “active low”
i.i. a “0” indicates the signal is “active”

Blue: Memory interface
Gold: I/O
Black: Other

16-bit
Address
Transferred
In 2 8-bit
Pieces

CSE 322 1802.6 Kogge, ND, 2/11/08

The Die

Register File

Data Flow

Decode,
Control Logic,
X, P, T, I, N …

CSE 322 1802.7 Kogge, ND, 2/11/08

Memory Interface
Processor supports up to 64K words of memory

Each word is 8 bits wide

Memory takes16 bit address
But only 8-bit memory bus
Address sent to memory parts 8-bits at a time

- Memory parts must “latch” first part (matches what happens in all
current DRAM chips)

Data is accessed in 1 word = 8 bit units

Most instructions are 8 bits long; a few are either 16 or
24 bits

CSE 322 1802.8 Kogge, ND, 2/11/08

Key Computational Registers (There are a few others for I/O & interrupts)

Register File: 16 16-bit registers R(0) … R (15)
Each register is used as a pointer to hold a memory address

- 3 registers also used for special I/O-related addresses
– R(0) for DMA address, R(1) for interrupt PC, R(2) for interrupt X

8 bit halves of each may be accessed separately
- R(i).1 is the “high” 8 bits
- R(i).0 is the “low” 8 bits

Some instructions may automatically increment or decrement the
specified register in addition to the memory access

P register: 4 bit register which specifies which register in the register
file holds the address of the next instruction

I.e. which R register is the current PC

X register: 4 bit register which specifies which register in register file
is used in computational instructions to access memory for data

D register: 8 bit register that receives the results from the ALU

DF: 1 bit “Data Flag” used to capture carries, shifts, ….

CSE 322 1802.9 Kogge, ND, 2/11/08

Normal Instruction Execution Cycle
“CPU cycle” equals one memory access cycle

Made up from 8 chip clock pulses

Most instructions take exactly 2 such CPU cycles
“S1 EXECUTE”

- Select register from RF that contains address & present to memory
- Make memory reference for data for current instruction

“S0 FETCH”
- Do required computation in data flow and update machine registers
- Select the RF entry that currently holds the PC
- And simultaneously fetch next instruction from memory

“Long Branches” take 3 cycles because of the extra word they
access from memory

Chip has only 8 bit address bus, so 16 bit address is output in two
pieces (which means memory system must “latch” lower part)

Data flow has separate circuitry for simultaneous
increment/decrement of register file entry being used for address

CSE 322 1802.10 Kogge, ND, 2/11/08

ISA Overview

CSE 322 1802.11 Kogge, ND, 2/11/08

Instructions With Explicit Register Specifiers

LDN: Load via N: D=M[R(N)]

LDN: Load via N: D=M[R(N)] and R(N)++

STN: Store via N: M[R(N)]=D

INC: Increment Register N: R(N)++

DEC: Decrement Register N: R(N)–

GLO: Get Low: D=R(N).0

GHI: Get High: D=R(N).1

PLO: Put Low: R(N).0=D

PHI: Put High: R(N).1=D

SEX: Set X: X=N

SEP: Set P: P=N

0 1 2 3 4 5 6 7

Opcode N Field: Selects a Register

CSE 322 1802.12 Kogge, ND, 2/11/08

Instructions that Use X, R(X), and Memory[R(X)]

LDX: Load via X: D=M[R(X)]

LDXA: Load via X and Advance: D=M[R(X)] and R(X)++

STDX: Store via X and Decrement: M[R(X)]=D and R(X)—

IRX: Increment Register X: R(X)++

OR: D=M[R(X)] || D

AND: D=M[R(X)] && D

XOR: D=M[R(X)] ^ D

ADD: D=M[R(X)] + D

SD: Subtract D: D=M[R(X)] – D

SM: Subtract Memory: D=D - M[R(X)]

Others: Shift lefts and rights of various forms, adds , subs with carries

0 1 2 3 4 5 6 7

Opcode

CSE 322 1802.13 Kogge, ND, 2/11/08

Instructions With 8-bit Immediate Constants

Note: During 1st cycle of these, R(P) points to Immediate word

LDI: Load Immediate: D=M[R(P)] and R(P)++

ORI : Or Immediate: D=M[R(P)] ||D

Likewise for AND, XOR, ADD, and Subtract Immediate
Options for Add and Subtract to use carry/borrow for extended arithmetic
Subtract has two forms: D-Immediate and Immediate-D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Opcode 8-bit Immediate Value

CSE 322 1802.14 Kogge, ND, 2/11/08

Short Branches

Note: During Execute cycle of these, R(P) points to Branch Address

Branch Condition field specifies some condition to test

If Condition is True, then R(P).0=M[R(P))
i.e. replace lower 8 bits of current PC with the constant from instruction

If Condition is False, then R(P)++
i.e. increment PC to next word after this instruction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lower 8 bits of Branch AddressOpcode Branch Condition

CSE 322 1802.15 Kogge, ND, 2/11/08

Long Branches

3 cycle execution

During 1st execution cycle, R(P) points to upper byte of Branch
Address

And R(P) is simultaneously incremented

During 2nd cycle, R(P) points to lower byte of Branch Address
And R(P) is simultaneously incremented again

Branch Condition field specifies some condition to test

If Condition is True, then R(P).1=M[R(P)] and R(P).0=M[R(P)+1]
i.e. replace all of current PC with the 16 bit constant from instruction

If Condition is False, then R(P)+=2
i.e. increment PC to next word after this instruction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Lower 8 bits of Branch AddressOpcode Branch Condition Upper 8 bits of Branch Address

CSE 322 1802.16 Kogge, ND, 2/11/08

Data Flow and Timing

CSE 322 1802.17 Kogge, ND, 2/11/08

A “Simplified” Data Flow

8 bit Register

4 bit Register

T

Mux

R(0)
R(1)

……..

R(15)

Memory
Address Bus
(Out Only)

Mux Mux

Inc/Dec

16

M
A

R
(1

6
bi

ts
)

Hi Lo

16

Hi
Lo

MDR

D

ALU

I

X

P

N

M
ux

4

Low 4

Hi 4

Memory
Data Bus
(BiDirectional)

8

4 bit bus

8 bit bus

16 bit bus

CSE 322 1802.18 Kogge, ND, 2/11/08

Example: Machine Cycles for LDXA
S1 EXECUTE S0 FETCH

Read M[R(X)]
A

dd
 1

 to
 M

A
R

W
rit

e
to

 R
[X

]

D
ec

od
e

M
ux

 X
 to

 R
F

A
dd

re
ss

R
ea

d
R

[X
]

D
ec

od
e

M
ux

 P
 to

 R
F

A
dd

re
ss

R
ea

d
R

[P
]

Read M[R(P)]

A
dd

 1
 to

 M
A

R

W
rit

e
to

 R
[P

]Do ALU operation
(MDR+0)

Latch:
“LDXA” into I,N

Latch:
R(X) into MAR

Latch:
M[R(X)] into MDR

Latch:
M[R(P)] into I,N

ALU output into D

Latch:
R(P) into MAR

CSE 322 1802.19 Kogge, ND, 2/11/08

External Chip Control Signals
CLEAR, WAIT: two control signals from outside of chip to control
program’s execution

~CLEAR ~WAIT Function
Low Low LOAD: Hold CPU in IDLE state with

address & data buses disabled;
External device can then load
memory

Low High RESET: I=N=Q=X=P=R(0)=0; IE=1;

High Low PAUSE: Stop the clocks

High High RUN: Let the clocks run

CSE 322 1802.20 Kogge, ND, 2/11/08

Input/Output Considerations

CSE 322 1802.21 Kogge, ND, 2/11/08

I/O Instructions
Q: 1 bit register whose output comes off the chip

SEQ: Set Q: Q=1
REQ: Reset Q: Q=0
Various Branch conditions test Q

EF1 to EF4: 4 1-bit “External Flags”
Inputs to chip from outside devices
Testable by Short Branch conditions

N1-N3: 3 “I/O Address” Lines that leave CPU

OUT # (1-7): output data
Place # on N1-N3
Signal Output
Place D on chip data bus

IN # (1-7): input data
Place # on N1-N3
Signal Input
Copy data bus into D

CSE 322 1802.22 Kogge, ND, 2/11/08

Interrupts
One interrupt line from off-chip

IE: 1-bit register “Interrupt Enable”

T: 8-bit register for Interrupt data

If signal on interrupt line and IE=1 then take interrupt
Save (X,P) into T
X=2
P=1
IE=0 (disabled)

Interrupt instructions
SAV: Save T: M[R(X)]=T
RET: Return and enable: (X,P)=M[R(X)] and R(X)++ and IE=1
DIS: Return and disable: (X,P)=M[R(X)] and R(X)++ and IE=0
MARK: Push X,P to Stack: T=(X,P) and M[R(2)]=(X,P); then X=P and R(2)--

CSE 322 1802.23 Kogge, ND, 2/11/08

DMA Capability
2 input signals from offside chip

~DMA-IN: signal external device wants to do a DMA to memory
~DMA-OUT: signal external device wants to do a DMA from memory

If either is active, then at end of next instruction
Place R[0] onto address bus
If DMA-IN active, write what data is on data bus (from device) to
memory
IF DMA-OUT active, read memory and allow device to sample
memory output

CSE 322 1802.24 Kogge, ND, 2/11/08

Programming

CSE 322 1802.25 Kogge, ND, 2/11/08

Accessing a Variable in Memory
All operand addresses must be in a register

Assume here all objects are 8 bits

If address of Z is in register “k”, then
To load Z into D use LDN k
To store Z from D use STR k

To place a known address into register k
LDI low_byte_of_Z

PLO k

LDI hi_byte_of_Z

PHI k

If register k has an address that is 1 away from desired
one, then use INC k or DEC k to compute address

Great for arrays or data streams

CSE 322 1802.26 Kogge, ND, 2/11/08

Computation with variables in memory (The “X” Factor)

Address in register designated by X register has special
properties

Instruction SEX k sets X to point to register k

X need not be specified in loads (LDX) or stores (STX)

Can be used to perform operation with D
As in ADD that performs D = M[R(X)} + D

On loads, R(X) can be optionally incremented after use
LDXA

On stores, R(X) can be optionally decremented after use
STXD

Additional instructions to increment R(X): IRX

CSE 322 1802.27 Kogge, ND, 2/11/08

Multi-byte Integers
Dealing with multi-byte integers requires multiple
instructions and use of DF flag for byte-to-byte carries

Example: assume we want to add two 32-bit (4 byte)
integers A and B, and place result in C

All variables in “Little Endian” format
- Lowest address is to least significant byte

Address of least significant byte of A in R(3)
Address of least significant byte of B in R(X) (whatever X is)
Address of least significant byte of C in R(4)

LDN 3; get 1st byte of A
ADD; Add on 2nd byte of B
STN 4; store in 1st byte of C
INC 3; adjust address of A
IRX; adjust address of X
INC 4; adjust address of C

LDN 3
ADC
STN 4
INC 3
IRX
INC 4

LDN 3
ADC
STN 4
INC 3
IRX
INC 4

LDN 3
ADC
STN 4

ADC does add including carry from last add

CSE 322 1802.28 Kogge, ND, 2/11/08

Procedure Calls
All addresses, including program addresses, are in
registers

P points to register holding current PC

To call a procedure:
Must have address of that procedure in some register
Must be able to switch the P to point to that new register
Must be able to switch back at end of procedure

% Assume register 3 has current PC
% and register 4 is free for use by FOO

LDI low_adr_of_FOO
PLO 4
LDI high_adr_of_FOO
PHI 4
SEP 4 ;call FOO
…next instruction after FOO completes

FOO: …..
….
SEP 3;return

After SEP 4,
R(3) points
here

After SEP 3
PC is R(3)
and points here

When FOO is executing
P=4, and R(4) holds PC

CSE 322 1802.29 Kogge, ND, 2/11/08

Self-Resetting Procedure Calls
Assume procedure FOO is called a lot

It gets annoying to continually reload R(4)

Thus dedicate R(4) to FOO, and load it once at
beginning

Rewrite FOO as

FOOEXIT SEP 3; return, leaving R(4) at start of FOO
FOO: …

…
BR FOOEXIT

CSE 322 1802.30 Kogge, ND, 2/11/08

Even Neater: Co-Routines
Assume FOO and FUM mutually call each other

As is typical in many real-rime consumer-producer applications
I.e. each is a separate “Thread”

Procedure FUM uses R(3), and Procedure FOO uses R(4)

FUM: …
…; generate 1st data for FOO
SEP 4; start FOO
…; generate next data for FOO
SEP 4; restart FOO
…

FOO: …; process 1st data from FUM
SEP 3; return to FUM
…; process next data from FUM
SEP 3; return to FUM
…

CSE 322 1802.31 Kogge, ND, 2/11/08

What about X Register?
Each procedure might want to manage its own X register

Especially with co-routines or interrupt handlers

SEX k allows us to “reset” X, but how to “remember”
caller’s X?

Answer: (Useful in interrupt routines)
MARK saves both X and P to memory pointed to by R(2)

- And then decrements R(2)
Then if X=2, RETURN reloads X and P from memory

- With side effect of “enabling interrupts”
DISABLE does same thing but “disables interrupts”

