
1

X.S. Hu 3-1

CSE 30321
Computer Architecture I

Lecture Notes 3:
A Simple Computer: Simple12

And
Design at Register Transfer Level

X. Sharon Hu
Department of Computer Science and Engineering

The notes are developed based on the effort of all those
who have taught CSE321 before.

X.S. Hu 3-2

Generic Computer Organization

Memory Program
Memory

Program Counter
Clock

Data Path

Register Control
Logic

(Interprets
the ISA)

Stored Program Machine
(vonNeumann Model)
Instructions are
represented as numbers
Programs in memory are
read or written just as
normal data

X.S. Hu 3-3

Typical Instruction Execution

I-Fetch

DECODE

EA

D-FETCH

EXECUTE

WRITEBACK

ENDOP

Fetch the next Instruction

Decide what is to be done

Compute the address of any operands

Fetch the data

Perform computation

Store the results

Clean up (increment PC)

X.S. Hu 3-4

Memory Organization

HARVARD
ARCHITECTURE

PRINCETON
ARCHITECTURE

Instruction
Memory CPU Data

Memory CPU
Instruction

and
Data

Memory

2

X.S. Hu 3-5

Simple12: A Minimal Computer

Start

PC A

Address(8)

Read (1)

Write (1)

DataIn(12)

DataOut(12)

PC (Program
Counter):
holds the 8-bit
address
of the current
instruction

A (Accumulator):
holds
12 bits of data

RAMControl Datapath

X.S. Hu 3-6

Simple12 Instruction Format

Opcode: Operation Code
Specifies the action to be taken by the machine

Address: The operand’s address

Opcode (4) Address (8)

X.S. Hu 3-7

Simple12 ISA

OPCODE Mnemonic RTL (What does the instruction do)
0000 JMP X PC <- X
0001 JN X if A<0 then PC <-X else PC++
0010 JZ X if A=0 then PC <-X else PC++
0011 reserved
0100 LOAD X A <- M(X), PC++
0101 STORE X M(X) <- A, PC++
0110 reserved
0111 reserved
1000 AND X A <- A and M(X), PC++
1001 OR X A <- A or M(X), PC++
1010 ADD X A <- A + M(X), PC++
1011 SUB X A <- A - M(X), PC++
1100 reserved
1101 reserved
1110 reserved
1111 reserved

X.S. Hu 3-8

A Simple12 Assembly Program

Problem: Given three memory locations (X, Y, and Z),
use the Simple12 to find the maximum of (X, Y) and
place it in Z

PROGRAM

0 LOAD X
1 SUB Y
2 JN B1
3 LOAD X
4 JMP SAVE
5 B1: LOAD Y
6 SAVE: STORE Z

3

X.S. Hu 3-9

Program Execution (1)

PROGRAM VALUE IN A

0 LOAD X 10
1 SUB Y 5
2 JN B1 5 (not taken)
3 LOAD X 10
4 JMP SAVE 10 (taken)
5 B1: LOAD Y
6 SAVE: STORE Z 10

X: 10
Y: 5
Z: n/a

X.S. Hu 3-10

Program Execution (2)

PROGRAM VALUE IN A

0 LOAD X
1 SUB Y 10 - 5 = 5
2 JN B1
3 LOAD X
4 JMP SAVE
5 B1: LOAD Y
6 SAVE: STORE Z

X: 10
Y: 5
Z: n/a

X.S. Hu 3-11

Program Execution (3)

PROGRAM VALUE IN A

0 LOAD X
1 SUB Y
2 JN B1 5
3 LOAD X
4 JMP SAVE
5 B1: LOAD Y
6 SAVE: STORE Z

X: 10
Y: 5
Z: n/a

X.S. Hu 3-12

Program Execution (4)

PROGRAM VALUE IN A

0 LOAD X
1 SUB Y
2 JN B1
3 LOAD X
4 JMP SAVE 10
5 B1: LOAD Y
6 SAVE: STORE Z

X: 10
Y: 5
Z: n/a

4

X.S. Hu 3-13

Program Execution (6)

PROGRAM VALUE IN A

0 LOAD X
1 SUB Y
2 JN B1
3 LOAD X
4 JMP SAVE
5 B1: LOAD Y
6 SAVE: STORE Z 10

X: 10
Y: 5
Z: 10

X.S. Hu 3-14

Another Example Simple12 Program
; A program to see if each
: item in array contains a
; particular element
; while (A[i] != 0)
; if (A[i] & Mask !=0)
; A[i] = 1;
; else
; A[i] = 0;
; i++;
; Data declarations!
.DATA A0 3
.DATA A1 5
.DATA A2 3
.DATA A3 8
.DATA A4 19
.DATA A5 0
.DATA Zero 0
.DATA One 1
.DATA Mask 1

L1: LOAD A0
JZ Done
AND Mask
JZ B1
LOAD One
JMP L2

B1: LOAD Zero
L2: STORE A0

LOAD L1
ADD One
STORE L1
LOAD L2
ADD One
STORE L2
JMP L1

Done:
.END

X.S. Hu 3-15

Registers

Flip-FlopCLK

D

Q

CLK

D

Q
Flip-Flop: state changes only on the
rising clock edge.

LatchCLK

D

Q

CLK

D

QClocked Latch: State changes when
the clock is asserted and the inputs
change.

Register: an array of flip-flops

X.S. Hu 3-16

Register Transfer Operations

Register RegisterCombinatorial
Logic

Register RegisterCombinatorial
Logic

Before Clock

After Clock

5

X.S. Hu 3-17

Register Transfer Language

Register Transfer Language (RTL): describes the
internal operation of the system in terms of a
sequence of register reads, combinatorial logic, and
register writes.

Defines operations in terms of data flow and
associated control mechanisms
Can be relatively high level
Forms the basis of most hardware description
languages

X.S. Hu 3-18

Example Register Transfer Operations

XOR

A

B

C C <= A xor B
A

+

1

A <= A + 1

X.S. Hu 3-19

RTL Assignments

D load

S

CLK c

if (c) then D <= S if (s0 and x) then Z <= c+d

Z loadCLK s0 and x

+

C D

Register transfer operations are expressed as:

D <= S

“D” (destination) gets “S” (source)
c d

X.S. Hu 3-20

Functions and Operators

• Bit-vectors used as both
operands and results

• Examples:
– Decode(X)
– Add(X,Y)
– F(Q)

MUXS
P

A
n
B

n n...
n

Y

Y <= A when s=0 else
B when s=1 else
...

Similar to switch/case construct in C

6

X.S. Hu 3-21

Parallel Assignments

A

B

LOAD

A <= B, B<= A

Question: if A=11 and B=00 initially, what are their values after
one clock cycle?

X.S. Hu 3-22

Sequencing Constructs

Each line of code is executed after the line before:
step1: A <= X;
step2: B <= Y;
step3: C <= A+B;

Operations may occur in parallel:
step1: A <= X, B<=Y;
step2: C <= A+B;

Goto Statement Acceptable:
step1: A <= X, B <= Y;
step2: C <= A + B, if A[0] = 1 goto step1;

X.S. Hu 3-23

RTL Notation Summarized

SYMBOL DESCRIPTION EXAMPLE

Names/Letters Registers A, B, foo
<= Transfer into (“gets”) A <= B
: (colon) indicates a control state s0: <statement>
, (comma) parallel microoperations A<=B,C<=D
+, - Arithmetic Operations A<=B+1
&, |, overline logic operators (bitwise) A<=A&B
<<,>> shift operators A<=B<<1
if, then, else conditional if (c=0) then

F<= 1
else F<= 0

goto branch goto s0

More excercise

X.S. Hu 3-24

Sequencing

Algorithm execution is controlled
by sequencing states
Each state has an associated
microinstruction
Several parallel microoperations
may occur in each state

implemented as register
transfers

Conditional branching

Microinst

Microinst

Microinst

Microinst

S0

S1

S2

S3

N<0

N>=0

7

X.S. Hu 3-25

Microcoding
AKA: Microprogramming
Instructions are expressed as a series of
microinstructions that express each time-step of the
operation.

microinstructions are composed of micro-operations
Only one microinstruction executes at a time
Each microinstruction executes its set of micro-
operations in parallel

...

...
Microinstructions

Microoperations

}Microprogram

X.S. Hu 3-26

Simple12 ISA
OPCODE Mnemonic RTL______________________
0000 JMP X PC <- X
0001 JN X if A<0 then PC <-X else PC++
0010 JZ X if A=0 then PC <-X else PC++
0011 reserved
0100 LOAD X A <- M(X), PC++
0101 STORE X M(X) <- A, PC++
0110 reserved
0111 reserved
1000 AND X A <- A and M(X), PC++
1001 OR X A <- A or M(X), PC++
1010 ADD X A <- A + M(X), PC++
1011 SUB X A <- A - M(X), PC++
1100 reserved
1101 reserved
1110 reserved
1111 reserved

X.S. Hu 3-27

Simple12

PC (Program Counter):
holds the 8-bit address
of the current instruction

A (Accumulator): holds
12 bits of data

X.S. Hu 3-28

Simple12: External Interfaces

VISIBLE REGISTERS
PC (Program Counter):
holds the 8-bit address
of the current instruction

A (Accumulator): holds
12 bits of data

INVISIBLE REGISTERS

MAR (Mem. Access Reg):
places the address for a
memory access onto the
address bus.

MDR (Mem. Data Reg.):
transfers data to/from
memory

8

X.S. Hu 3-29

Memory Read/Write

MAR holds the address, MDR holds the value
The control signals memory read (mem_read) and
memory write (mem_write) must be set appropriately
MEMORY READ:

MAR <= address, mem_read <= 1
MEMORY WRITE:

MAR <= address, MDR <= value, mem_write <= 1

X.S. Hu 3-30

Typical Instruction Execution

I-Fetch

DECODE

EA

D-FETCH

EXECUTE

WRITEBACK

ENDOP

Fetch the next Instruction

Decide what is to be done

Compute the address of any operands

Fetch the data

Perform computation

Store the results

Clean up (increment PC)

X.S. Hu 3-31

Simple12 Instruction Execution

PC <= 0

Fetch 12-bit Instruction

Decode Instruction

Compute Operand’s Address

Fetch 12-bit Operand

Compute New Value

Save Results

Compute New PC

Start=0

Start=1

NOTE: Not all instructions
require that all
microinstructions be
executed.

Microinstructions

X.S. Hu 3-32

ALU Operations

op X, take the form: A <= A op Mem[X]

Fetch 12-bit Instruction

Decode Instruction

Compute Operand’s Address

Fetch 12-bit Operand

Compute New Value

Save Results

Compute New PC

Examine MDR(11:8)

MAR <= PC

MAR <= MDR(7:0)

mem_read <= 1

A <= A op MDR

PC <= PC + 1

mem_read <= 1{2 cycles
IFetch

7 Cycles

Decode

}

9

X.S. Hu 3-33

LOAD/STORE Operations

LOAD X: A <= Mem[X] STORE X Mem[X] <= A

MAR <= PC

How many cycles?

mem_read <= 1

Examine MDR(11:8)

MAR <= MDR MAR <= MDR

mem_read <= 1

A <= MDR

PC <= PC + 1

MDR <= A

mem_write <= 1

PC <= PC + 1

LOAD STORE

X.S. Hu 3-34

Jump Operations

JMP X JN X JZ X
Unconditional if A[11]=1 if A=0

MAR <= PC

mem_read <= 1

Examine MDR(11:8)

PC <= MDR(7:0)

Branch SuccessfulBranch Failed

How many cycles for each instruction?

PC <= PC + 1

X.S. Hu 3-35

Required Datapath Operations

ALU Instructions
AND, OR, ADD, SUB
PC Increment

LOAD/STORE Instructions
Register Transfers Only
PC Increment

JUMP Instructions
Check A[11] and A=0

n_flag
z_flag

Only Register Transfers

X.S. Hu 3-36

Example Program Execution

EXAMPLE: Choose the max of two
numbers.

00h: LOAD X (30h)
01h: SUB Y (31h)
02h: JN B1 (06h)
03h: LOAD X (30h)
04h: JMP SAVE (07h)
06h: B1: LOAD Y (31h)
07h: SAVE: STORE Z (32h)
.
.
.
30h: X: 7
31h: Y: 10
32h: Z: n/a

CYCLE* PC A MAR MDR MEM OP
1 00h - 0 - -
2 00h - 0 430h Read M[0]
3 00h - 0 430h -
4 00h - 30h 430h -
5 00h - 30h 007h Read M[30h]
6 00h 007h 30h 007h -
7 01h 007h 30h 007h -
8 01h 007h 01h 007h -
9 01h 007h 01h B31h Read M[01h]
10 01h 007h 01h B31h -
11 01h 007h 31h B31h -
12 01h 007h 31h 00Ah Read M[31h]
13 01h FFDh 31h 00Ah -
14 02h FFDh 31h 00Ah -

* End of each cycle

10

X.S. Hu 3-37

Potential Improvements
Cannot use opcode in the subsequent cycle as it is in
MDR

Solution: Add an “Instruction Register” (IR)
Loaded from the memory bits 11-8 at the same time as MDR

A cycle is wasted in each instruction moving PC to MAR
Solution: update PC and MAR simultaneously

The only writes to memory come from A
Solution: tie A to DataOut and save a cycle for MDR <= A

Most instructions require PC <= PC+1
Solution: use more hardware

Many microinstructions are the same (or very similar)
regardless of opcode

Solution: group common states together

X.S. Hu 3-38

Revised Microprogram RTL
Stopped: If start=1 then (MAR <= 0, PC<=0, goto IFetch)

else goto Stopped
IFetch: read_mem <= 1, MDR <= DataIn, MAR<=PC+1,

PC<=PC+1, IR<=DataIn(11:8), goto EAGen
EAGen: if (IR=JMP) or (IR=JN and A(11)=1) or (IR=JZ and A=0)

then MAR <= MDR(7:0), PC<=MDR(7:0) goto IFetch
else if (IR=JN) or (IR=JZ) then goto IFetch
else MAR <= MDR(7:0), goto OpAccess

OpAccess: MAR <= PC,
if IR=LOAD or IR(3:2)=10 /* i.e., an ALU operation */

then (Read <= 1, MDR<=DataIn, goto Execute)
else (Write <= 1, DataOut <= A, goto IFetch) /* a STORE */

Execute: if (IR=LOAD) then A <= MDR, goto IFetch
else if (IR=AND) then A <= A and MDR, goto IFetch
else if (IR=OR) then A <= A or MDR, goto IFetch
else if (IR=ADD) then A <= A + MDR, goto IFetch
else if (IR=SUB) then A <= A - MDR, goto IFetch

NOTE: if Read and Write are not explicitly specified, they are 0

X.S. Hu 3-39

Revised State Machine

Stopped

IFetch

EAGen

OpAccess

Execute

~Start

Start

Jumps
Store

INSTRUCTION CYCLES
JMP 2
JN 2
JZ 2
LOAD 4
STORE 3
AND 4
OR 4
ADD 4
SUB 4

X.S. Hu 3-40

A First-Cut Datapath

IR
MAR

MDR

A

PC

Required Microoperations:
PC <= 0
MDR <= DataIn, IR <= DataIn,

PC<= PC +1
MAR <= MDR(7:0),

PC<=MDR(7:0)
MAR <= PC
A <= MDR
A <= A + MDR
A <= A - MDR
A <= A and MDR
A <= A or MDR

M
U
X

11

0

10

00

AND
0/1

DataOut

Address

DataIn
B

A

Zero

R(11) Negative

11

X.S. Hu 3-41

Control Signals

Resulting Control Points:
Load Signals for each register
ALU Controls (4 bits)

b-invert, carry-in, op1, op0
MUX1: select PC, MDR, or 0
AND: Select 0 or A

B

A

Zero
IR

MAR

MDR

A

PC

AND

M
U
X

11

0

10

00

DataOut

Address

DataIn

R(11) Negative
LoadPC

LoadMAR

LoadIR

LoadMDR

LoadAFuncSel (Op0 and Op1)

Cin

Binv

(0/1)

bMux

aGate

X.S. Hu 3-42

ALU Control Definitions

Binv Cin op1 op0 ACTION
0 0 0 0 A and B
1 0 0 0 A and ~B
0 0 0 1 A or B
1 0 0 1 A or ~B
0 0 1 0 A + B
0 1 1 0 A + B + 1
1 1 1 0 A - B
1 0 1 0 A - B + 1

ALU also has a “zero” flag.

X.S. Hu 3-43

Moore and Mealy Machines

Microinstructions will be issued to the data path using a
state machine
Two possibilities:

Moore Machine: the outputs of the state machine depend
only on the current state
Mealy Machine: the outputs of the state machine depend
on the current state and the values of the inputs

X.S. Hu 3-44

Moore and Mealy Machines

Curr
ent

State

Next
State

Function
(comb.
logic)

Inputs

Output Function
(combinational logic)

Moore Machine

Output

Curr
ent

State

Next
State

Function
(comb.
logic)

Inputs

Output Function
(combinational logic)

Mealy Machine

Output

12

X.S. Hu 3-45

Mealy Design Problem

EAGen

IFetch

if (IR=JMP) or (IR=JN and A(11)=1 or
(IR=JZ and A=0)

then MAR <= PC <= MDR(7:0)

IR=JN or IR=JZ

ALU needed twice in the same cycle!

X.S. Hu 3-46

Two Solutions

EAGen

IFetchIR=JN or IR=JZ (not taken)

BTaken

(IR=JN and A(11)=1) or
(IR=JZ and A=0)

MAR <=PC<=MDR(7:0)

First:

Second: Add More Hardware (check the Z-flag outside the ALU)

X.S. Hu 3-47

Revised Timing

INSTRUCTION CYCLES
JMP 2
JN not taken 2

taken 3
JZ not taken 2

taken 3
LOAD 4
STORE 3
AND 4
OR 4
ADD 4
SUB 4

X.S. Hu 3-48

Simple12 Control Signal Table

Q IR S Neg Zero Q* L L L L L A b a R Wt A P M M I L M G e ra C A D R U U a a ir R R X t d tt e e___Stopped n/a 0 n/a n/a Stopped 0 0 0 0 0 n/a 0 0Stopped 1 IFetch 0 1 1 0 0 + 0 0 0 0IFetch EAGen 0 1 1 1 1 + PC 0 1 0EAGen JMP IFetch 0 1 1 0 0 + MDR 0 0 0EAGen JN 0 IFetch 0 0 0 0 0 0 0EAGen JZ 0 IFetch 0 0 0 0 0 0 0EAGen JN 1 BTaken 0 1 1 0 0 + MDR 0 0 0EAGen JZ 1 BTaken 0 1 1 0 0 + MDR 0 0 0EAGen LD/ST Opnd 0 0 1 0 0 + MDR 0 0 0EAGen ALUOP Opnd 0 0 1 0 0 0 0Opnd LOAD Execute 0 0 1 1 0 + PC 0 1 0Opnd ALU Execute 0 0 1 1 0 + PC 0 1 0Opnd STORE IFetch 0 0 1 0 0 + PC 0 0 1Execute LOAD IFetch 1 0 0 0 0 + MDR 0 0 0Execute AND IFetch 1 0 0 0 0 AND MDR 1 0 0Execute OR IFetch 1 0 0 0 0 OR MDR 1 0 0Execute ADD IFetch 1 0 0 0 0 ADD MDR 1 0 0Execute SUB IFetch 1 0 0 0 0 SUB MDR 1 0 0BTaken IFetch 0 1 1 0 0 + MDR 0 0 0

0 0
0 0

13

X.S. Hu 3-49

Control Path Implementation

Hardwired
Microprogrammed

A control unit with its binary control values stored as
words in memory (ie, a ROM)
Big Questions:

How do we structure the microprogram?
How do we sequence through microinstructions?
What are the fields?

X.S. Hu 3-50

Microprogrammed Control Unit

Memory
(ROM)

Address
(Control Inputs)

Data
(Control Outputs)

X.S. Hu 3-51

Microprogram Structure

000000

001111
010000

011111
100000

111111

Up to 2 Micro-
Instructions per
OpCode

Common States
(IFetch, etc)

Additional Long
Sequences

• Shared States
– Stopped, IFetch

• 16 Possible OpCodes
– OperandAccess and

Execute sequences
somewhat different for
each

– Minimum 2 non-Shared
Microinstructions to be
allocated

• Additional space available in
table for growth

X.S. Hu 3-52

Microinstruction Template

Cond Addr Next Load Load Load Load ALU b a Rd WtSel Sel Addr A PC MAR MDR MUX Gate 3 1 6 1 1 1 1 4 2 1 1 1

b-inv Cin 00 AND01 OR10 ADD

10

14

X.S. Hu 3-53

Condition Select

Q,IR

Control
Store
ROM

1 => Loads Q with new address
0 => Increments Q to next address

Control Signals to Data Flow

Addr. Select: if Q LD/EN=1 (load Q)
0 => select next address bits from ROM

1 => construct address from control and “IR” bits

Branch
Addr (6)

Addr
Select (1)

MUX

M
U
X

LD/EN

Condition Select:
chooses how LD/EN
is driven

False
True
~A(11)
~ALU=0
~Start

X.S. Hu 3-54

Sample Microinstruction

Cond Addr Next Load Load Load Load ALU b a Rd WtSel Sel Addr A PC MAR MDR MUX Gate 100 0 000000 0 1 1 0 0010 0 0 0 0

b-inv Cin 00 AND01 OR10 ADD

10

X.S. Hu 3-55

Sample Microinstruction (continued)

Cond Addr Next Load Load Load Load ALU b a Rd WtSel Sel Addr A PC MAR MDR MUX Gate 001 1 0 1 1 1 0110 11 0 1 0

b-inv Cin 00 AND01 OR10 ADD

10

X.S. Hu 3-56

EAGen for JN

Cond Addr Next Load Load Load Load ALU b a Rd WtSel Sel Addr A PC MAR MDR MUX Gate

b-inv Cin 00 AND01 OR10 ADD

010 0 0 0 0 0 00 000001

BTaken 10

15

X.S. Hu 3-57

BTaken for JN

Cond Addr Next Load Load Load Load ALU b a Rd WtSel Sel Addr A PC MAR MDR MUX Gate

b-inv Cin 00 AND01 OR10 ADD

001 0 1 1 0 0 00 000001 0010 10 0

BTaken
MAR PC MDR(7:0), goto IFetch

10

1

X.S. Hu 3-58

EAGen for ADD

Cond Addr Next Load Load Load Load ALU b a Rd WtSel Sel Addr A PC MAR MDR MUX Gate

b-inv Cin 00 AND01 OR10 ADD

ADD at 110100
MAR MDR[7:0], goto OpAcc

000 0 0 1 0 0 00010 10 0

10

X.S. Hu 3-59

OpAcc for ADD

Cond Addr Next Load Load Load Load ALU b a Rd WtSel Sel Addr A PC MAR MDR MUX Gate

b-inv Cin 00 AND01 OR10 ADD

OpAcc for ADD at 110101
MDR[7:0] DataIn, goto Execute

001 0 0 0 1 1 00 011010

10

Any mistake? Yes, need MAR <- PC
LoadMAR = 1, ALU = 0010, bMUX = 11, aGate = 0

X.S. Hu 3-60

Execute for ADD

Cond Addr Next Load Load Load Load ALU b a Rd WtSel Sel Addr A PC MAR MDR MUX Gate

b-inv Cin 00 AND01 OR10 ADD

Execute for ADD at 011010
A MDR[7:0] + A, goto IFetch

001 1 0 0 0 0 00 000001 0010 10 1

10

16

X.S. Hu 3-61

EAGen for LOAD

Cond Addr Next Load Load Load Load ALU b a Rd WtSel Sel Addr A PC MAR MDR MUX Gate

b-inv Cin 00 AND01 OR10 ADD

LOAD at 101000
MAR MDR[7:0], goto OpAcc

000 0 0 1 0 0 00010 10 0

10

X.S. Hu 3-62

OpAcc for LOAD

Cond Addr Next Load Load Load Load ALU b a Rd WtSel Sel Addr A PC MAR MDR MUX Gate

b-inv Cin 00 AND01 OR10 ADD

OpAcc for LOAD at 101001

001 0 0 1 1 1 00 010100

10MDR[7:0] DataIn,
MAR PC, goto Execute

0010 11 0

X.S. Hu 3-63

Execute for LOAD

Cond Addr Next Load Load Load Load ALU b a Rd WtSel Sel Addr A PC MAR MDR MUX Gate

b-inv Cin 00 AND01 OR10 ADD

Execute for LOAD at 010100
A MDR[7:0], goto IFetch

001 1 0 0 0 0 00 000001 0010 10 0

10

