
CSE 322 jam-overview.1 Kogge, ND, 16/09

CSE/EE 322: Computer Architecture II
Spring 2009

The JAM machine Series

Peter M. Kogge

CSE 322 jam-overview.2 Kogge, ND, 16/09

The Original JAM-8
 Roots in JVM: Java Virtual Machine

 Target of most Java compilers, & designed for portability
 Usually executed by SPIM-like JVM interpreter program – but not always

 “Stack-based” ISA
 Radically different from the MIPS you studied

- No data register files, just four “pointer” registers
- Variable length instructions

 Forces you to really understand “multi-cycle” instruction execution
- AND memory-intensive computing

 Will help your understanding of the ubiquitous Java interpreter

 The JAM-8: used since 2000 in Comp Arch II as design target
 Selected subset of JVM instructions (multiples of 8 bits)
 Some instructions modified for ease of design
 All data reduced to 8 bits, with 8 bit addresses (256 byte memory)
 Rich suite of potential speedup techniques

 Reasons for Change to JAM3D
 Run programs that consume more than 256 bytes of instructions and data
 Simplify the design a bit

CSE 322 jam-overview.3 Kogge, ND, 16/09

The JAM3D
 Same subset of instructions but re-encoded in 12 bit words

 I did add a few extra for interpreter only (multiply & divide) that will
make for more interesting benchmarks and performance analysis

 All data and memory addresses = 12 bits (4K words of
memory)
 Allows your interpreter to run “looong” programs to gather “real”

data

 Only 2 different instruction lengths instead of three

 Enough “space” to allow discussion of ISA extensions
 Multi-threading
 Graphics (12-bit word contains three 4-bit R, G, B intensities)
 …

CSE 322 jam-overview.4 Kogge, ND, 16/09

Why Not a JAM-“16” Instead

Plus
 Would have given bigger memory capacity
 More closely tracked real JVM
 Matches real memory widths

Minus
 Data and instructions now different basic units
 Requires more complex memory interface

- Alignment issues
- Little vs Big Endian considerations

 And complexity adds little to your ability to design

CSE 322 jam-overview.5 Kogge, ND, 16/09

A Conceptual High Level Picture of JAM3D

ALU

Vars: pointer to local vars
Frame: State for current method
Optop: pointer to top of stack
PC: Program counter

Programmer-visible Registers

Datapath

12-bit address

12-bit data

Code

Stack

Global Data

Memory

Typical ISA instruction: iadd: Mem[optop+1]<=Mem[optop+1] + Mem[optop]; optop++

12 bits

Possible implementation: iadd: MDR = Mem[optop];
TOS = TOS + MDR;
optop = optop + 2;
PC = PC + 1; IR = Mem[PC];

Programmer-invisible Registers

MAR: Memory Address register
MDR: Memory Data Register
TOS: Top of Stack register
IR: Instruction Register

CSE 322 jam-overview.6 Kogge, ND, 16/09

A Subset of the JVM from P&H 2.14 (on CD)

CSE 322 jam-overview.7 Kogge, ND, 16/09

Metrics for JAM3D Designs
 Performance

 Individual CPI: cycles per each instruction – esp. more “challenging” ones
 Total cycle count for test program(s)
 Total instructions executed for test program(s)
 Average CPI for test programs
 Perhaps: achievable clock frequency when synthesized for XiLinx

 Cost
 Number of transistors
 Computed from spreadsheet of basic logic blocks

 Energy & Power (new)
 Energy per instruction EPI: cycles * “activity”
 Energy per program EPP: sum of EPI
 Power per program: EPP/(cycles*clock)

 Cost-Performance = #Transistors * average CPI

 Power-Performance = power per program * time per program

Spread Sheet for Complexity Estimates for JAM-8 Group_______________________
Design Name: Today: 12/5/2007

Version 3: 1/11/05 |---Components Used---| |-----Equivalent Transistor Count-----|
Everything 0 0 0 0 0

MemoryOnly 0 0 0 0 0
Logic Only 0 0 0 0 0

|-----Estimates Here-----| |-----Equivalent Transistor Count-----|
Inputs Macro Type Transistors Control Data Path Control DataPath Total

Invertor 2 0 0 0
Tri-State Bus driver 4 0 0 0
2 NAND 4 0 0 0
2 NOR 4 0 0 0
3 NAND 6 0 0 0
3 NOR 6 0 0 0
4 NAND 8 0 0 0
4 NOR 8 0 0 0
5 NAND 10 0 0 0
5 NOR 10 0 0 0
6 NAND 12 0 0 0
6 NOR 12 0 0 0
7 NAND 14 0 0 0
7 NOR 14 0 0 0
8 NAND 16 0 0 0
8 NOR 16 0 0 0
2 Exclusive Or 12 0 0 0
2 Multiplexor 6 0 0 0
3 Multiplexor 14 0 0 0
4 Multiplexor 18 0 0 0
5 Multiplexor 32 0 0 0
6 Multiplexor 38 0 0 0
7 Multiplexor 44 0 0 0
8 Multiplexor 50 0 0 0

1 bit Adder 24 0 0 0
1 bit ALU 46 0 0 0

1 bit latch 18 0 0 0
8 Comparator 112 0 0 0

Register File: 504 0 0 0
8 - Word size:
4 - # entries:
3 - # ports

Memory#1 14928 0 0 0
8 - Word size:

256 - # entries:
Memory#2 14928 0 0 0

8 - Word size:
256 - # entries:

ROM 4688 0 0 0
8 - Word size:

256 - # entries:
PLA 346 0 0 0

4 Inputs 146
10 And Terms
8 Outputs 200

Other 0 0 0
Other 0 0 0

Note: adder and ALU assume ripple carries
Black Cell: no entries are in here
Grey Cell: Entries here are computed, do not modify
Clear cell: enter data here (blank is equivalent to 0)
Yellow Cells: computed summary numbers
Memory is RAM or ROM; Logic includes Register Files & PLAs

Design Totals
Design Totals
Design Totals

CSE 322 jam-overview.8 Kogge, ND, 16/09

JAM-8 Designs: Prior Years Results
Cost vs CPI

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

0 5,000 10,000 15,000 20,000

Transistor Count

C
PI

Logic Alone 2003 Memory+Logic 2003 Logic Alone 2004
Memory+Logic 2004 Logic Alone 2005 Logic+Memory 2005

Cost vs MaxFinder Cycles

0
50

100
150
200
250
300
350
400
450
500

0 5,000 10,000 15,000 20,000 25,000 30,000

Transistor Count

C
yc

le
 C

ou
nt

Logic Alone 2003 Memory+Logic 2003 Logic Alone 2004 Memory + Logic 2004

Cost-Performance vs CPI

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000

2.00 3.00 4.00 5.00 6.00 7.00

CPI

Tr
an

si
st

or
 C

ou
nt

*C
PI

Logic Alone 2003 Memory+Logic 2003 Logic Alone 2003
memory+Logic 2004 Logic Alone 2005 Memory + Logic 2005

CSE 322 jam-overview.9 Kogge, ND, 16/09

Change to Labs
JAM-8 Activities

1. JAM-8 interpreter

2. Cache using Shade

3. Pipelining using Shade: GONE

4. Branch Prediction using Shade

5. JAM-8 Behavioral interpreter

6. JAM-8 Structural interpreter

JAM-3D Activities

1. JAM3D interpreter

2. JAM3D Benchmark Development

3. JAM3D Mix Analysis

4. JAM3D Cache Simulation

5. JAM3D Behavioral implementation

6. JAM3D Branch Prediction

7. JAM3D Structural implementation

8. JAM3D on XiLinx: NEW
1. Includes lab on memory synthesis

Blue Labs build on your JAM3D interpreter
Gold Labs: build towards Xilinx implementation

CSE 322 jam-overview.10 Kogge, ND, 16/09

Lab Component Relationships

1
Interpreter

2

Benchmark
Development

3 4 6

5 7 8

Mix
Analysis

Cache
Simulation

Branch
Prediction

Behavioral
Implementation

Structural
Implementation

Synthesized
Implementation

Increase your
Analysis Skills

Develop your
Design Skills

JAM3D

ISA Understanding
Microarchitectural

Techniques

Implementation

CSE 322 jam-overview.11 Kogge, ND, 16/09

Lab Organization
 Meet in Lab every 2 weeks

 Traditional:
 Go over next lab component
 Meet as group
 Get help from TA
 Use lab facilities (esp. at end)

 New:
 Collate and discuss results from last component - in group
 Discuss options for next component – in group

 Deliverables
 Comparative data due to TA by Tuesday noon of lab week
 Lab reports due in class on Thursday of lab week

CSE 322 jam-overview.12 Kogge, ND, 16/09

Non-Design Labs: Benchmark Development
 One or more common benchmarks will be made available

 Each group will select a different short “benchmark”
 With two data sets: a short “debug” and a long “performance”
 Convert to JAM3D code
 Extract statistics from their interpreter
 Post results to class web site in advance of lab discussion

 Work done in 2 halves
 1st Half:

- benchmark selection and coding (in favorite prog. lang.)
- Translation to JAM3D assembly, with gathering of static statistics

 2nd Half: get running on interpreter (and gather dynamic statistics)

 In Lab discussion
 Statistics will be combined and compared
 “Meaning” in terms of impacts on performance will be discussed

CSE 322 jam-overview.13 Kogge, ND, 16/09

Non-Design Labs: Cache interpreter
 Each group will add a simple “cache interpreter” to their

ISA interpreter
 Goal is to measure hit rate as a function of cache parameters

 Common benchmark & individual group program will be
run on interpreter with range of cache parameters
 Again results will be posted to web site

 In Lab Discussion:
 Again statistics will be correlated and combined
 Most appropriate cache parameters will be discussed

CSE 322 jam-overview.14 Kogge, ND, 16/09

Non-Design Labs: Branch Predictor
 Each group will add a simple “branch predictor” to their

ISA interpreter
 Goal is to measure prediction rate as a function of design

parameters

 Common benchmark & individual group program will be
run on interpreter with range of parameters
 Again results will be posted to web site

 In Lab Discussion:
 Again statistics will be correlated and combined
 Most appropriate predictor parameters will be discussed

