
Bipartite Matching as a Graph Benchmark

Abstract—There are presently several graph benchmarks in the
literature, some with hundreds of published processing reports.
They all, however, have several characteristics that make them
of academic, but not necessarily real-world interest. This paper
proposes bipartite matching as a benchmark with real-world
relevance. Variations in algorithms and implementations are
discussed, with an emphasis on a reference implementation and
possible scaling via parallelism.
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I. INTRODUCTION

A graph is of a set of objects (vertices), and links (edges)
between pairs of objects that represent some sort of relation-
ships. Computing over such graphs is of increasing importance
to a wide spectrum of application areas ranging from “con-
ventional” communication and power networks, transport, and
scheduling, to emerging applications such as social networks,
medical informatics, genomics, and cybersecurity.

While there are several current graph benchmarks, some
with hundreds of reported implementations, most of them
are based on “academic” graph problems, and often have
little direct value to real-world applications, especially when
we want to understand the relative efficiency of different
hardware architectures and configurations. Further, given that
many of these graphs are growing in size, it is critical that we
understand how to do such processing in parallel in an efficient
manner. A companion paper [1] suggests three alternatives
selected to overcome the issues with the current suite. These
include computation of the overlap in neighbors between pairs
of vertices, determination of a set of edges that form matches
between vertices, and stateful random walks.

This paper focuses on the second: identifying matches
between vertices in a very large bipartite graph. ... In the real
world, ... . Common examples studied in the literature involve
... .

Another complex example ....
In addition to the kernel, a graph benchmark with real-

world relevance should represent accurately how the graph
is represented and provided to the underlying implementation.
A batch implementation must read in something akin to the
edge list of a graph and generate all possible coefficients in the
graph. This corresponds to the way most graph benchmarks are
defined today. An in-memory implementation instead may start
with a graph already constructed as a directly accessible data
structure, and may be more relevant to real-world applications
that want to perform a variety of on-demand analytics. Two
versions of this are relevant here; one where a query requests
all coefficients within the graph as in a batch implementation,
and one where the coefficients for only a specific subset of

vertices (perhaps only one) is requested. In either case, imple-
mentations must be capable of handling multiple concurrent
queries. A third implementation version of particular real-
world relevance is one that streams updates into an in-memory
graph, and requests a list of what coefficients may change as
a result.

This paper defines a formal benchmark for the core of
such problems. The rest of this paper is organized as follows.
Section II introduces the problem formally and defines metrics.
Section III discusses possible algorithms when all coefficients
are desired. Section IV discusses streaming implementations.
Section V discusses variations and heuristics that may help
performance. Section VI overviews related work. Section
VII discusses a sequential reference implementation. Section
VIII discusses expression of the problem in a variety of
graph programming paradigms. Section IX discusses parallel
implementations and their expected scaling characteristics.
Section X concludes. The Appendix lists some alternative
implementations. Two companion papers [2], [3] cover the
other two benchmarks proposed in [1] in a format similar to
this paper.

II. PROBLEM AND METRICS

III. ALGORITHMS

Algorithm 1 Sequential Hopcroft-Karp:
L = set of “left” vertices
R = set of “right” vertices
E = {(u, v)| u in L, v in R}
M = set of edges in matching
A = |L| by |R| matrix where A[i, j] = 1 if (i, j) in E

1: procedure HK1(A)
2: M ← ∅
3: repeat
4: for u in L do
5: if u not in M and u starts some P then
6: M ← Pu ⊕M
7: end for
8: until No augmenting paths exist
9: end while

IV. STREAMING

A final real-world variation may involve building algorithms
that are streaming, that is some aspect of the graph changes
with time. This may include the incremental addition or
removal of vertices or edges. Given that adding a vertex adds
no new γs, and a vertex cannot be removed until all edges



to it have been removed, we will concentrate only on edge
addition and removal.

V. VARIATIONS AND HEURISTICS

VI. RELATED WORK

VII. REFERENCE IMPLEMENTATION

A particular maximum bipartite matching algorithm of
interest is that formulated by Hopcroft and Karp [4], due to
its desirable asymptotic time complexity of O(

√
V E) relative

to many other maximum matching algorithms. The algorithm
utilizes the concept of vertex disjoint augmenting paths. An
augmenting path is formed by an alternating path, a path that
alternates between matched and unmatched edges, with the
additional requirement of starting and ending on vertices that
are not part of M . We define an augmenting path Pu starting
from u and ending at v. It can be shown that exchanging
unmatched and matched edges along Pu, Pu ⊕ M , always
results in adding an edge to the matching, |M | = |M |+ 1.

The Hopcroft-Karp algorithm may be implemented with
a combination of breadth-first search (BFS) and depth-first
search (DFS). A BFS creates a layered graph level by level
with the first layer starting from unmatched vertices in L.
The edges in the layered graph alternate between matched and
unmatched, and the levels alternate between vertices in L and
R. The BFS terminates at the first level when an unmatched
vertex in R is found. If augmenting paths are found by the
BFS, a DFS is used to find the maximal set of vertex disjoint
augmenting paths. The DFS begins at the unmatched vertices
in the first level in the layered graph and traverses layer by
layer until an unmatched vertex in R is found. The edges along
the path are then exchanged between matched and unmatched,
increasing |M |. This process repeats until no augmenting paths
are found by the BFS, meaning the maximum matching has
been achieved.

NEEDS WRITEUP

A. Test Cases

A generator for bipartite graphs has been built in Python
that allows separate specification of the size of L and R as
well as the average degree. It then uses R-MAT, an algorithm
based on that used in the Graph500 benchmark [5], but with
edges only from L to R, and a separate set of probabilities
for both the source vertices and the destination vertices. The
original R-MAT algorithm produces oscillations within the
degree distribution, and is not guaranteed to be monotonically
decreasing. Random noise was added to the probabilities
during the graph generation which has been shown to dampen
these oscillations [6], producing distributions similar to those
seen in real-world graphs. When generating large-scale graphs,
no two consecutive graphs are identical due to the randomness
introduced in the R-MAT algorithm.

NEEDS MORE DISCUSSION

VIII. ALTERNATIVE REPRESENTATIONS

IX. SCALING AND PARALLELISM

Parallelism comes in three forms: shared memory multi-
threading in an environment where all threads can see all
the data structures, distributed memory multi-processing where
the data structures are partitioned across different nodes (and
explicit “messages” need be sent for interactions between
them), and hybrid codes where both are employed. OpenMP is
a typical programming environment for the former, and MPI
for the middle.

X. CONCLUSIONS
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APPENDIX

A. GraphBLAS
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