CMOS VLSI Design

CMOS Processing

Peter Kogge University of Notre Dame Fall 2015, 2018

Based on material from Prof. Jay Brockman, Joseph Nahas, University of Notre Dam Prof. David Harris, Harvey Mudd College http://www.cmosvlsi.com/coursematerials.html

Outline

- **CMOS Physical Structure**
- Photolithography (Using light to define objects)
 - ✤ Positive
 - ✤ Negative
- □ Fabrication Overview
- □ Fabrication Step-by-Step
 - Etching (Removal of material)
 - Doping of Semiconductor (Adding donor and acceptors)
 - Deposition (Adding material on top of wafer)
- Newer Processes

CMOS Cross Sections

CMOS Processing

CMOS VLSI Design

Slide 3

□ Key Controlling Physical Parameters

- Length (L) of channel
- Width (W) of Channel
- Thickness (t_{ox}) of gate insulator
- Material types
 - N-type: Phosphorous doped to provide "free" electrons
 - P-type: Boron doped to provide "free" positive holes

Circuits-A

CMOS VLSI Design

Slide 4

Inverter Cross-section

- □ Typically use *p-type substrate* for nMOS transistors
- □ Requires *n*-well for body of pMOS transistors

CMOS Processing

CMOS Technology Cross Section

CMOS Processing

TSMC 0.18 CMOS Cross Section

130 nm transistor

Photolithography

CMOS Processing

CMOS VLSI Design

Slide 9

Photolithography

- □ Aka "optical lithography"
- Selectively remove parts of a

thin film on top of a substrate

✤ or the *bulk* of a substrate.

- □ Uses light to transfer geometric pattern
 - from photo mask

to light-sensitive chemical photo resist, ("resist"), on the substrate.

Series of chemical treatments engraves exposure pattern into material underneath the photo resist.

Photolithography Light

Photolithography

- Process of transferring geometric shapes on a mask (quartz glass plate) to the surface of a silicon wafer.
- Mask is created using a photolithographic process with an electron beam to scan the images on the plate.

Photolithography

Feature on mask results in feature on silicon

Feature on mask results in negative feature on silicon

CMOS Processing

Fabrication Overview

CMOS Processing

CMOS VLSI Design

Slide 15

CMOS Fabrication

- □ CMOS transistors fabricated on silicon *wafer*
 - ***** One wafer contains tens to thousands of chips
 - Today wafers are up to 300 mm across
- Photolithography process "prints" patterns on the wafer.
- On each step, different materials are deposited or etched
- Easiest to understand: view both *top* and *cross-section* of wafer in a simplified manufacturing process, circa 1980.

CMOS Chips In Cross Section

http://www.hitequest.com/Kiss/photolithography.gif

Inverter Cross-section

- □ Typically use *p-type substrate* for nMOS transistors
- □ Requires *n*-well for body of pMOS transistors

CMOS Processing

Well and Substrate Taps

- □ Process circa 1980
 - Modern processes much more complicated but more robust.
- □ Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Schottky Diode
 - Very low threshold voltage
- □ Use heavily doped well and substrate contacts / taps

CMOS Processing

Inverter 6 Mask Set

- □ Transistors and wires are defined by sets of *masks*
 - ✤ 2D pattern selectively allows/blocks access to chip surface
 - * Each mask controls one kind of structure
- □ Two views will be shown in the following slides
 - ✤ Mask view
 - Vertical cross-section taken along dashed line (see previous slide)

Mask Views

Fabrication Step by Step

CMOS Processing

CMOS VLSI Design

Slide 22

Silicon Growth

Fabrication Steps

- **Start with blank wafer**
- **Build inverter from the bottom up**
- □ First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

CMOS Processing

n-well: Oxidation

Grow SiO_2 on top of Si wafer

* 900 – 1200 C with H_2O or O_2 in oxidation furnace

p substrate

CMOS Processing

n-well: Photoresist

□ Spin on *photoresist*

- Photoresist is a light-sensitive organic polymer
- Softens (positive) or hardens (negative) where exposed to light

	Photoresist
	SiO ₂
	-
n substrate	
	J

CMOS Processing

n-well: Lithography

- **Expose photoresist through n-well mask**
- □ Strip off exposed photoresist

CMOS Processing

n-well: Etch

- **Etch oxide with hydrofluoric acid (HF)**
 - Seeps through skin and eats bone; nasty stuff!!!
- **Dry etch using plasma etch (CF_4)**
- Only attacks oxide where resist has been exposed

CMOS Processing

Plasma Etching

CMOS Processing

Plasma Etcher

n-well: Diffusion

- □ n-well is formed with *diffusion* or *ion implantation*
- Diffusion
 - ✤ Place wafer in furnace with arsenic (As) gas
 - ✤ Heat until As atoms diffuse into exposed Si
- Ion Implanatation
 - Blast wafer with beam of As ions
 - Ions blocked by SiO₂, only enter exposed Si

Ion Implantation

CMOS Processing

Ion Implantation

Parameters

- Acceleration Voltage
 - Determines depth of implant
- Integrated Current Charge
 - Determines amount of implant

n-well: Strip Oxide

- □ Strip off the remaining oxide using HF
- □ Back to bare wafer with n-well
- □ Subsequent steps involve similar series of steps

	n well
p substrate	

CMOS Processing

Forming the Gates

- Deposit very thin layer of gate oxide
 \$\$\$< 20 Å (6-7 atomic layers)
- **Chemical Vapor Deposition (CVD)** of silicon layer
 - ✤ Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon

Heavily doped to be good conductor

- When the acronym "MOS" was invented, AI was used for the gate, instead of polysilicon.
- In 45 nm technology, metal gates and hafnium oxide are used.

		Polysilicon
		I hin gate oxide
	n well	
p substrate		

Plasma Assisted CVD

CMOS Processing

CVD Reactions

□ Silicon

 $\text{SiH}_4 \rightarrow \text{Si} + 2 \text{H}_2$

Silicon Dioxide

 $\clubsuit \text{ SiH}_4 + \text{O}_2 \rightarrow \text{SiO}_2 + 2 \text{ H}_2$

Silicon Nitride

 $\clubsuit 3 \text{ SiH}_4 + 4 \text{ NH}_3 \rightarrow \text{Si}_3\text{N}_4 + 12 \text{ H}_2$

Metal

* 2 MCI_5 + 5 $H_2 \rightarrow$ 2 M + 10 HCl

Gate: Polysilicon Patterning

□ Use same lithography process to pattern *polysilicon*

CMOS Processing

Transistor formation: Self-Aligned Process

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- □ N-diffusion forms nMOS source, drain, and n-well contact

CMOS Processing

Transistor: N-diffusion

- □ Pattern oxide and form n+ regions
- □ Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

CMOS Processing

Transistor: N-diffusion cont.

- □ Historically dopants were diffused
- □ Usually ion implantation today
- □ But regions are still called diffusion

CMOS Processing

Transistor: N-diffusion cont.

□ Strip off oxide to complete patterning step

CMOS Processing

CMOS VLSI Design

Slide 43

Transistor: P-Diffusion

Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

CMOS Processing

Forming Contacts

- □ Now we need to wire together the devices
- **Cover chip with thick field oxide**
- **Etch oxide where contact cuts are needed**

CMOS Processing

Metalization

- □ Sputter on aluminum over whole wafer
- **D** Pattern to remove excess metal, leaving wires

CMOS Processing

Sputter Deposition

CMOS Processing

Advanced Processes

CMOS Processing

CMOS VLSI Design

Slide 48

Twin Tub CMOS w/STI & AI-W metal

Why Changes?

CMP Oxide

- Chemical Mechanical Polishing (CMP)
- ✤ Flatten surface to enable multiple levels of metal
- □ Tungsten (W) contacts and Vias
 - ✤ Enable use of CMP
- P+ Substrate
 - ✤ Reduce substrate resistance and thus reduce latch-up.
- D P-Epi
 - Needed to enable p and n transistor tub doping with P+ Substrate
- □ Shallow Trench Isolation (STI)
 - Reduce source and drain capacitance
 - Reduce source and drain spacing
- □ Tungsten-Silicide
 - ✤ Reduce gate resistance

CMOS Processing

Twin Tub CMOS w/STI & AI-W metal

Dual Damascene Cu Process

CMOS Processing

TSMC 0.18 CMOS Cross Section

130 nm transistor

Deep Sub Micron Progress

http://www.zdnet.com/blog/computers/why-intels-22nm-technology-really-matters/5703

CMOS Processing

CMOS VLSI Design

Slide 55

Intel 45 nm Transistor

http://www.eetimes.com/design/automotive-design/4004782/Under-the-Hood-Intel-s-45-nm-high-k-metal-gate-process

CMOS Processing

TriGate or FinFET Transistor

http://www.electronicproducts.com/uploadedImages/Digital_ICs/Microprocessors_Microcontrollers_DSPs/MOUCM_Processing0102_AUG2013.jpg

CMOS Processing

32 and 28 nm Transistors

http://www.sciencedirect.com/science/article/pii/S0040609011018335

CMOS Processing

Intel 22 nm Tri-gate Transistor

http://www.electroiq.com/blogs/chipworks_real_chips_blog/2012/04/intel-s-22-nm-trigate-transistors-exposed.html

CMOS Processing

10nm FINFET

http://www.electronicproducts.com/uploadedImages/Digital_ICs/Microprocessors_Microcontrollers_DSPs/MOUCM_Processing0103_AUG2013.jpg

CMOS Processing

A 10nm Protein Transistor

http://www.nature.com/nnano/journal/v7/n3/fig_tab/nnano.2012.7_F2.html

CMOS Processing

CMOS VLSI Design

Slide 61

Carbon Nanotube Transistor

http://www.infineon.com/export/sites/default/media/press/Image/migration/nanotube_english.jpg

CMOS Processing

CMOS VLSI Design

Slide 62