
Jaccard Coefficients as a Graph Benchmark

Abstract—There are presently several graph benchmarks in the
literature, some with hundreds of published processing reports.
They all, however, have several characteristics that make them
of academic, but not necessarily real-world interest. This paper
follows up on a proposed “Jaccard” graph benchmark with real-
world relevance that involves the “neighborhoods” of vertices.
Variations in algorithms and implementations are discussed, with
an emphasis on a reference implementation and possible scaling
via parallelism.

Keywords-Graphs algorithms, Jaccard coefficients, Scalability

I. INTRODUCTION

A graph is of a set of objects (vertices), and links (edges)
between pairs of objects that represent some sort of relation-
ships. Computing over such graphs is of increasing importance
to a wide spectrum of application areas ranging from “con-
ventional” communication and power networks, transport, and
scheduling, to emerging applications such as social networks,
medical informatics, genomics, and cybersecurity.

While there are several current graph benchmarks, some
with hundreds of reported implementations, most of them
are based on “academic” graph problems, and often have
little direct value to real-world applications, especially when
we want to understand the relative efficiency of different
hardware architectures and configurations. Further, given that
many of these graphs are growing in size, it is critical that we
understand how to do such processing in parallel in an efficient
manner. A companion paper [1] suggests three alternatives
selected to overcome the issues with the current suite. These
include computation of the overlap in neighbors between pairs
of vertices, determination of a set of edges that form matchings
between vertices, and stateful random walks.

This paper focuses on the first: computation of Jaccard
Coefficient on very large graphs. The Jaccard coefficient
Γ(u, v) between two entities u and v (both vertices in a graph)
is the ratio of the number of neighboring vertices common to
both u and v to the total number of neighbors of either u
and v. In the real world, such a number gives a measure of
the “strength” of some “similarity” or “relationship” between
the two entities. Common examples studied in the literature
involve authors and documents, authors and reviewers, and
actors and movies. Another application discussed in [2] is the
similarity of Wikipedia users that edit Wikipedia pages, or
symmetrically the similarity of web pages that are edited by
the same user. Of more widespread relevance is in recommen-
dation systems where a high overlap in what customers buy
what products may indicate what other products to advertise
on a per customer basis.

Another complex example from a real insurance problem
[3] may be determining with whom a person has shared a

residence. Consider a graph with several classes of vertices
including at least people and residence addresses. An edge
between a person and an address implies that that person once
resided at that address. A relationship between two people u
and v may be declared if the Jaccard Coefficient based on
common residences is high. A “1.0” implies the two have
always shared residences; a “0” implies they have never shared
a residence; intermediate values implies different degrees of
sharing. Extra weighting may be given for people who held
the same last name during the residency.

In addition to the kernel, a graph benchmark with real-
world relevance should represent accurately how the graph
is represented and provided to the underlying implementation.
A batch implementation must read in something akin to the
edge list of a graph and generate all possible coefficients in the
graph. This corresponds to the way most graph benchmarks are
defined today. An in-memory implementation instead may start
with a graph already constructed as a directly accessible data
structure, and may be more relevant to real-world applications
that want to perform a variety of on-demand analytics. Two
versions of this are relevant here; one where a query requests
all coefficients within the graph as in a batch implementation,
and one where the coefficients for only a specific subset of
vertices (perhaps only one) is requested. In either case, imple-
mentations must be capable of handling multiple concurrent
queries. A third implementation version of particular real-
world relevance is one that streams updates into an in-memory
graph, and requests a list of what coefficients may change as
a result.

This paper defines a formal benchmark for the core of
such problems based on Jaccard coefficients. The rest of
this paper is organized as follows. Section II introduces the
problem formally and defines metrics. Section III discusses
possible algorithms when all coefficients are desired. Section
IV discusses streaming implementations. Section V discusses
variations and heuristics that may help performance. Sec-
tion VI overviews related work. Section VII discusses a
sequential reference implementation. Section VIII discusses
expression of the problem in a variety of graph programming
paradigms. Section IX discusses parallel implementations and
their expected scaling characteristics. Section X concludes.
The Appendix lists some alternative implementations. Two
companion papers [4], [5] cover the other two benchmarks
proposed in [1] in a format similar to this paper.

II. PROBLEM AND METRICS

A Jaccard Coefficient (also called a Jaccard Index or a
Tanimoto Index) is a measure of the “similarity” between
two vertices (termed “ entities”) of a graph in terms of the

overlap of their neighboring vertices (which need not be of
the same class).1 If N(u) is the set of vertices that form the
“neighborhood” of the vertex u (i.e. the set of vertices that
have an edge from u to them), then the Jaccard coefficient Γ(u,
v) between two vertices u and v is the ratio of the number of
neighboring vertices in common to the total number of distinct
neighboring vertices2:

Γ(u, v) = |N(u) ∩N(v)| / |N(u) ∪N(v)| (1)

An alternative representation of the above equation is based
on two measures: γ(u, v) as the number of vertices in common
between vertices u and v, and dout(u) as the out-degree of
vertex u (the number of edges leaving u to other vertices).

Γ(u, v) = γ(u, v) / (dout(u) + dout(v)− γ(u, v)) (2)

Also, to better reflect many real world problems, we assume
without loss of generality the graphs are bi-partite, that is there
is a “left” set of vertices L and a “right” set of vertices R, with
all edges E from a vertex in L to a vertex in R. The γs are
then computed over pairs of vertices from L whose neighbors
are from R. We call each such pair (u, v) where (u,w) and
(v, w) are both in E, a “link”. It is possible to have up to
O(|L|(|L| − 1)/2 non-redundant links in a graph3

The size of the sets L and R may be radically different.
The problem from [3] has L as a set of people, and R a set
of possible residential addresses. A “normal” problem in the
2012 time-frame had |L| = 800 million and |R| = 100 million

If |L| is the number of vertices in L, then there can be
up to |L|(|L| − 1) non-zero coefficients4. While O(|L|2)
is potentially extremely large for real problems, real-world
graphs seem to have an exponent of more like |L|k for k in
the range 1.2 to 1.4. In any case, the number of non-zero
coefficients will have a definite effect on the complexity of
Jaccard algorithms.

Also affecting complexity is how the coefficients are to be
saved and reported out. This may range from requiring storing
all |L|2 of them, to saving just the non-zeros, to just the non-
zeros but where they may be streamed out in some arbitrary
order. The last case implies that once a coefficient has been
computed, it is not necessary to keep it around.

If we know γ[u, v] then if we also know the out degrees
dout(v) if each vertex, then the computation of the correspond-
ing Γ(u, v) is two adds and a divide. It is also the case that
for many real-world problems, knowing γ(u, v) is sufficient to
provide the insight needed. That is certainly the case for [3].
Finally, we note that γ(u, v) = γ(v, u), and thus if vertices
can be placed in some numerical order (such as their index in

1The original Jaccard Similarity was a measure of the statistical similarity
between two sets. The definition here makes each such set an “entity” vertex,
with edges to the members of the set.

2∩ stands for set intersection, ∪ is set union, and |...| denotes set cardinality
3The links (u, v) and (v, u) are the same; we count (u, v) where u < v

as the non-redundant one.
4Consider the case where each vertex in L has an edge to the same vertex

in R.

an array) then we need only compute γ(u, v) where u < v.
This saves approximately 1/2 the computation. Thus this paper
focuses on just computing the non-redundant γs.

In terms of performance metrics, the computation of links
in some sense corresponds to the basic work involved in
the computation of non-zero, non-redundant, γs as the final
product. When divided by the execution time, this former gives
us work in links per second, and the latter number gives us
an overall performance metric for algorithms of “JAC/s”, or
“JAccard Coefficients per Second”.

III. ALL-COEFFICIENTS ALGORITHMS

Algorithms 1 through 4 represent algorithms for computing
all γs in a graph with varying time and space complexity.
Table I summaries upper bounds for these complexities. Note
that the space complexity refers only to the memory needed
to do the computations, not to save any γs at the end.

Algorithm 1 Jaccard via Adjacency Matrices:
L = set of “left” vertices
R = set of “right” vertices
E = {(u, v)| u in L, v in R}
A = |L| by |R| matrix where A[i, j] = 1 if (i, j) in E

1: procedure J1(A)
2: for u in L do
3: for v > u in L do
4: γ[u, v]← inner product(A[u, :], A[v, :])

5: end for
6: end for

Algorithm 1 is the simplest. It assumes the graph is ex-
pressed as an adjacency matrix A where A[u, v] = 1 indicates
there is an edge from vertex u to vertex v. Its time complexity
is potentially cubic - an inner product is performed for each of
the non-redundant (u, v) pairs, even the ones that end up being
zero. For very dense graphs, this inner product involves up
to O(|R|) “multiply-adds.” For the more realistic very sparse
graphs, if sparse kernels are used, the work of each inner
product is more proportional to the out-degrees of the vertices.
In our prior notation, each “multiply” of two non-zeros is the
formation of a link. Finally, note that this whole operation is
equivalent to γ ← AAT where AT is the transpose of A.

As expensive as this time complexity is, the working space
complexity is essentially constant. Other than loop counts and
indices, nothing needs to be carried over from one γ(u, v) to
the next.

Algorithm 2 is similar in that there is an O(|V |2) outer loop
looking at all possible links, but instead of an inner product, for
each w reachable from u, a search is made on the neighbors of
v. A match corresponds to a link, and causes the corresponding
γ(u, v) count to be incremented. Time complexity is slightly
higher because we cannot rely on the intrinsic “order” of edges
the way we can with adjacency matrices. Working memory
though is still constant.

If a higher memory complexity is permissible, lower time
complexity is possible. Fig. 3 keeps a worst case O(|L|)

Algorithm 2 Incremental Jaccard:
L, R, E as above
N(u) = {w|(G) in E}

1: procedure J2(U, V)
2: for u in L do
3: for v > u in L do
4: γ[u, v] ← 0
5: for w in N(u) do
6: if w in N(v) then
7: γ[u, v] + = 1

8: end for
9: end for

10: end for

Algorithm 3 Matching Jaccard:
L, R, E as above
γ is a vector of counts where γ[v] is the count of all links
from the current u.

1: procedure J3(G)
2: for u in L do
3: Initialize γ to a vector of |L| 0s
4: for w in N(u) do
5: if (v, w) in E then
6: if u < v then γ[v] + = 1

7: end for . All γs involving u have been computed
8: end for

structure γ indexable by an L vertex, and for each u in L,
it explores one at a time each neighbor of u, N(u), in R. For
each of these ws, a backwards exploration is performed of
vertices v in L that have w as a neighbor. If u < v then this is
a non-redundant link and the associated γ is incremented. This
is best done if each vertex in R has an N−1 function which
indicates which vertices in L have edges to this one. Perhaps
a smarter data structure than a simple indexable O(|R|) vector
is an (key,value) hash table where the key is a v and the value
is the (u, v) count. Note also in this case, no γs are available
until the end of the inner-most loop, when the whole row of
γs for the same u are done. If these values need not be saved,
the γ vector could then be reused for the next u.

Algorithm 4 achieves a potentially significantly reduced
time complexity by performing a two-step join-like operation.
Here we keep two hash table-like structures, and iterate first
not over L vertices but over edges. For each edge (u,w) the
u vertex is added to a list ρ[w] associated with w. The second
step then iterates through the non-empty buckets of w, and for
each generates all possible (u, v) link pairs. Each pair then
indexes into γ and increments the appropriate term. While the
worst case memory complexity is O(|L|2), using hash tables
can keep this latter structure down to something proportional
to just the actual number of non-zero coefficients. This is the
algorithm used in several real-world Jaccard-like computations
(cf. [3]), with multiple level hash tables used to reduce the

Algorithm 4 Join Jaccard:
L, R, E, γ as above
ρ is a pool of key-value pairs where keys are vertices from R

and the value is a set of vertices from L

1: procedure J4(E)
2: Initialize ρ, γ
3: for e = (u,w) in E do
4: Append u to ρ[w]

5: end for
6: for w in ρ do
7: for all pairs u, v in ρ[w] do
8: if u < v then γ[(u, v)] + = 1

9: end for
10: end for

Algorithm Time Complexity Space Complexity

J1 O(|L|2dout−max) O(1)
J2 O(|L|2d2out−max) O(1)
J3 O(|L|dout−maxdin−max) O(|L|)
J4 O(E) +O(|R|d2in−max) O(|L|2)

dout−max is maximum out degree of any vertex in L
din−max is maximum in degree of any vertex in R

TABLE I: Complexities.

search time in the hash tables to essentially near constant,
even for large graphs.

While all of these algorithms compute all coefficients as-
sociated with a graph, Algorithms 1 through 3 explore parts
of a graph and thus are most appropriate for in-memory
implementations. Algorithm 4, however, builds up its data
structures by scanning edges, with no particular order. As such,
it is a particularly good candidate for batch implementations.

Further, Algorithms 1 and 2 have an outer loop over vertices
u in L. Their inner loops represent decent algorithms looking
for the coefficients associated with a particular u. Algorithm
2’s inner loops go further, and represent algorithms to query
the coefficient for a particular (u, v).

IV. STREAMING

A final real-world variation may involve building algorithms
that are streaming, that is some aspect of the graph changes
with time. This may include the incremental addition or
removal of vertices or edges. Given that adding a vertex adds
no new γs, and a vertex cannot be removed until all edges
to it have been removed, we will concentrate only on edge
addition and removal.

A. Edge Addition

When we add an edge (x,w), there are N−1(w) new links
generated. The resulting links may be using x in either the
u or v position. Each of these links may also either update a
previously non-zero γ or start a new one. If all prior gammas
are still accessible, then only N−1(w) updates to the γs need
be made. If, however, there are too many non-zero γs to be
kept around, then we need to recompute then from scratch.
Algorithm 6 diagrams this case. Again it is probably a good

implementation to construct the computed γs as an expandable
set of (key,value) pairs.

Not included in Algorithm 6 is code to see if x < y or vice
versa.

NEEDS MORE DISCUSSION

Algorithm 5 Incremental Edge Addition:
N(x), x in L, is the set of neighbors of x from R
N−1(w) is the set of vertices in L that have w as a neighbor
in R.

1: procedure J5(EDGE(X, W))
2: Initialize γ to size |N−1(w)|
3: for y in N−1(w) do
4: γ[x, y]+ = 1
5: for z in N(y) do
6: if z in N(x) then γ[x, y]+ = 1

7: end for
8: end for

B. Edge Removal

NEEDS WRITEUP

V. VARIATIONS AND HEURISTICS

A. Bloom Filters

A suggestion in [6] is to use a variation of a Bloom filter5

to quickly identify pairs of L vertices that have no possibility
of overlapping neighborhoods in R. To do this we partition R
into M non-overlapping subsets of vertices {R1, ...RM}, with
M typically a power of 2. For each x in L we construct an
M-bit bit vector b[x] where bit i is set to 1 if any edge (x,w)
has its w in Ri.

Now given two vertices u and v from L, if the logical
AND of b[u] and b[v] is all zeros, then there are no common
neighbors. Using this in algorithm 2 would not reduce the
worst case complexity, but could significantly reduce the time
spent in the inner loop testing neighborhoods. It would not
help algorithms 3 or 4 as they only explore pairs known to
have common neighbors.

B. Thresholds

An observation from real world applications is that very
often there are thresholds for either Γ or γ below which a
Jaccard coefficient need not be reported. This is certainly the
case for the example problem in [3].

The Bloom filter of the prior section can be modified
to quickly provide an upper bound on a γ(u, v) without a
detailed exploration. Define the function ones(b) as returning
the number of 1s’ in the bit vector b. The value returned from
the expression ones(b[u] AND b[v]) is the minimum number
of neighbors in common, and is the basis for the test in the
prior section. Instead consider ones(b[u] AND NOT (b[v])).
This is the minimum number of neighbors of u that are
known to not be in the neighborhood of v. If we subtract

5c.f. https://en.wikipedia.org/wiki/Bloom filter

this from dout(u) (the out-degree of u) we get the maximum
number of neighbors of u that could be neighbors of v. This
is thus an upper bound on γ(u, v). The symmetric expression
dout(v) − ones(b[v] AND NOT (b[u])) gives another upper
bound from v’s perspective.

The smaller of these thus is a hard upper bound on γ(u, v),
and if it is less than the desired threshold for γ, (u, v) can be
skipped. Likewise, a constant amount of computation can yield
a hard upper bound on Γ(u, v), and threshold as appropriate.
This can be done without exploring neighborhoods, and thus
could accelerate both algorithms 3 and 4.

C. Neighbors-Only Coefficients

The algorithms of the last section find Jaccard coefficients
between all vertex pairs between sets L and R in a bipartite
graph. Thus there are potentially as many as |L| ∗ |R| non-
zeros. A variation which may be useful when L = R is to look
only at pairs that have an edge between them to begin with.
In this case the maximum number of non-zero coefficients is
|E which is liable to be far smaller than |L| ∗ |R|.

[7] describes an algorithm for this case, and gives some
limited scaling results for up to 12 threads. In addition, this
algorithm includes a threshold as discussed in Section V-B.

VI. RELATED WORK

VII. REFERENCE IMPLEMENTATION

NEEDS WRITEUP

A. Test Cases

A generator for bipartite graphs has been built in Python
that allows separate specification of the size of L and R as
well as the average degree. It then uses R-MAT, an algorithm
based on that used in the Graph500 benchmark [8], but with
edges only from L to R, and a separate set of probabilities
for both the source vertices and the destination vertices. The
original R-MAT algorithm produces oscillations within the
degree distribution, and is not guaranteed to be monotonically
decreasing. Random noise was added to the probabilities
during the graph generation which has been shown to dampen
these oscillations [9], producing distributions similar to those
seen in real-world graphs. This allows for a somewhat more
realistic distribution of edges.

NEEDS MORE DISCUSSION

VIII. ALTERNATIVE REPRESENTATIONS

A. MapReduce

The MapReduce framework, as popularized in the Hadoop
environment [10], processes in parallel large data sets repre-
sented as “(key,value)” pairs. Processing occurs in a series of
“steps,” each of which has two phases. In a Map phase, each
input pair is processed in some way into another (key,value)
pair. In a Reduce phase, all pairs with the same key are
aggregated in some way to produce yet another (key,value).

An early MapReduce computation of Γs is described in [2].
The problem solved has L as a set of set names, and R is the
set of possible elements. The initial set of edges are equivalent

to (key,value) pairs where the “key” is a set name X from L,
and the “value” the name Y from R of an element of the set
X. Processing proceeds in three MapReduce steps:

• Reproduce the input, but where each value has a second
component equalling the out-degree of the set name.

• For each Y element, generate a pair where the key is
empty and the value is a set of pairs: the name of a set
that included it and the set name’s out-degree.

• For each of the above pairs, the Map generates a set of
pairs where the key is all possible pairs of set names, and
the value the sum of the out-degrees. The Reduce then
groups up all pairs where the key pair is the same and the
value is the set of counts, and then uses this to compute
the associated Γ.

A larger MapReduce study can be found in [11]. Here
the graph used is not bipartite but a general single vertex
class, undirected edge, RMAT graph as found in the Graph500
benchmark. The algorithm has 5 steps, with the middle 3 a
cross between algoriths 2 and 3. An initial step annotated
vs with degree, and a final step “randomized” the output.
Problems of different sizes up to 64 million vertices (1 trillion
edges) were run on a 1000 dual-socket node cluster. For the
largest sized problems the system computed 149 million JACs
per second.

IX. SCALING AND PARALLELISM

Parallelism comes in three forms: shared memory multi-
threading in an environment where all threads can see all
the data structures, distributed memory multi-processing where
the data structures are partitioned across different nodes (and
explicit “messages” need be sent for interactions between
them), and hybrid codes where both are employed. OpenMP is
a typical programming environment for the former, and MPI
for the middle.

Shared memory multi-threading Algorithms 1 and 2 is
straightforward; teams of different worker threads can take
on different u iterations concurrently. Algorithms 3 and 4
are somewhat more complex in that there is more irregular
creation of child threads, and more synchronization needed
for updating γs when links are discovered.

Distributed memory parallel implementations are more com-
plex, especially as problems get more sparse and/or irregular.
The Hadoop implementations discussed in Section VIII-A are
examples. Further, as shown in [12], the computation of very
sparse problems where the reduction in computation time due
to the parallelism is quickly overwhelmed by communication
costs, to the point where overall performance actually degrades
with increasing parallelism.

A. A Partition-based Algorithm

An alternative parallel algorithm that avoids some of these
issues can be derived from an algorithm described in [13] for
counting triangles. Assume that L and R are partitioned into
N and M subsets respectively. Then assume we partition the
edges E into edge blocks Ei,j that contain all, and only those
edges from a vertex in Li to Rj , as pictured in Fig. 1.

L1

.

.

.

Li

.

.

.

.

.

.

Lj

LN

R1

.

.

.

Rk

.

.

.

RM

Ei,k

Ej,k

Fig. 1: Partitioned Bipartite Graph.

N/M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

3 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

4 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

5 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240

6 21 42 63 84 105 126 147 168 189 210 231 252 273 294 315 336

7 28 56 84 112 140 168 196 224 252 280 308 336 364 392 420 448

8 36 72 108 144 180 216 252 288 324 360 396 432 468 504 540 576

9 45 90 135 180 225 270 315 360 405 450 495 540 585 630 675 720

10 55 110 165 220 275 330 385 440 495 550 605 660 715 770 825 880

11 66 132 198 264 330 396 462 528 594 660 726 792 858 924 990 1056

12 78 156 234 312 390 468 546 624 702 780 858 936 1014 1092 1170 1248

13 91 182 273 364 455 546 637 728 819 910 1001 1092 1183 1274 1365 1456

14 105 210 315 420 525 630 735 840 945 1050 1155 1260 1365 1470 1575 1680

15 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800 1920

16 136 272 408 544 680 816 952 1088 1224 1360 1496 1632 1768 1904 2040 2176

Fig. 2: Number of Edge Blocks for N,M Partitions.

Now consider the pair of edge blocks Ei,k and Ej,k. This
pair contains all the information needed to compute all links
between u and v where u is in Li, v is in Lj , and the links
are through vertices in Rk. Any of the prior algorithms can
be adapted to find these links, but have a greatly reduced in
or out-degree to sort through. Further, there are NM different
Ei,ks, and for each Ei,k there are N−(i−1) possible Ej,ks that
don’t have redundant links. Thus there are MN2/2 +MN/2
separate pairs of edge sets, all of which may be performed in
parallel, with only the updates due to each link needing to be
done in an atomic, coordinated way across nodes. Algorithm
5 outlines such an approach, ignoring the needed distribution
of edge sets. Fig. 2 lists the number of edge blocks for several
N,M combinations. With this approach there are NM pairs
of blocks involving L1, but only M pairs involving LN .

One of the issues with conventional parallel graph bench-
mark implementations is “hot spot” or “load imbalance” due to
“heavy” vertices with far out of the ordinary in or out degrees.
If edges are evenly distributed, then each block Ei,k has about
E/NM edges. Further, if edges are not evenly distributed,
then the max out-degree for any L vertex in an edge block
is at most |R|/M , and/or the maximum in degree of any R
vertex in an edge block is at most |L|/N . In the worst case
an edge block may contain |Li| ∗ |Rk| edges, which if all
partitions are of equal size is of order |L| ∗ |R|/NM . If this

Algorithm 6 Partitioned Jaccard:

1: procedure J5(U, V)
2: for all 1 ≤ i ≤ N do
3: Initialize γ to —L—/M x —R—
4: for all 1 ≤ k ≤M do
5: for all i ≤ j ≤ N do
6: Find all links (u, v) where u in Li,
7: v in Lj , and link goes thru Rk.
8: For each link: γ[u, v]+ = 1

9: end for
10: end for
11: end for

isn’t sufficient to prevent load imbalance, then there is nothing
in this approach that demands equal sized partitions. Thus a
very heavy L vertex could be a L partition in its own right, or
a very heavy R vertex could likewise be a separate R partition.

If there are O(MN2) processors each handling a dif-
ferent pair of edge sets, then the time of the inner-
most loop on one processor is approximately the time for
the whole problem. If we use a variant of Algorithm 4,
then a reasonable estimate of execution time would be
O((|R|/M)(din−max/N)2)) ≈ O((|R|d2in−max)/MN2.
This is O(MN2) times faster than Algorithm 4, which with
O(MN2) processors is very nearly perfect strong scaling6.

Note also that if we use a variant of Algorithm 4, we
need not generate the cross-product of all the Ei,k and Ej,ks
intermingled, but only those from Ei,k against those from
Ej,k, which is a much smaller number. Further, when we know
that j > i, then no redundant links are needed, and we can
exclude a test of v > u. However, the case j = i, which is
needed for links within an L partition, still must be checked.

Algorithm 5 also does not include the initialization of any
needed γs or ρs. If we execute all pairs in parallel, then it is
possible to generate links between any u and any v at any time.
This requires a worst-case γ to be initialized. If, however, the
outer loop is not done in parallel, but sequentially, then an
initialization between steps 3 and 4 of a γ of only size |L|/N
by |R| is needed.

Also if an Algorithm 4 variant is used for the inner code,
then a ρ of only length |R|/M need be built, but a separate
such ρ is needed for each parallel instance.

Algorithm 7 outlines such a code. The code inside the
outermost loop can be executed for each Ei,k, Ej,k pair
concurrently. The if u < v need only be executed when i = j
as for all other pairs we are guaranteed that u < v

One of the key advantages of this algorithm, especially for
distributed memory systems, is that given that a pair Ei,k, Ej,k

is positioned on a single node, then all the memory accesses to
them are local. The only non-local references are the atomic
updates to γ[u, v].

6The O(|E|) term in the time complexity only goes down by MN , so that
may limit scalability for large parallelism.

Algorithm 7 Partitioned Parallel Join Jaccard:

1: procedure J7()
2: Initialize γ
3: for all combinations of Ei,k, Ej,k do
4: Initialize ρL, ρR
5: for all (u,w) in Ei,k do
6: Append u to ρL[w]

7: end for
8: for all (v, w) in Ej,k do
9: Append v to ρR[w]

10: end for
11: for all w in Rk do
12: for all u in ρL[w] do
13: for all v in ρR[w] do
14: if u < v then
15: γ[u.v]+ = 1

16: end for
17: end for
18: end for
19: end for

X. CONCLUSIONS

ACKNOWLEDGMENT

This work was supported in part by NSF grant CCF-
1642280, and in part by the University of Notre Dame.

APPENDIX

A. GraphBLAS

REFERENCES

[1] P. M. Kogge, N. V. Chawla, D. Thain, B. A. Page, and N. A. Butcher,
“Realistic computationally stressing graph benchmarks,” In Preparation,
2018.

[2] J. Bank and B. Cole, “Calculating the jaccard similarity coefficient with
map reduce for entity pairs in wikipedia,” Wikipedia Similarity Team,
Dec. 2008.

[3] P. Kogge and D. Bayliss, “Comparative performance analysis of a
big data nora problem on a variety of architectures,” in Collaboration
Technologies and Systems (CTS), 2013 International Conference on,
2013, pp. 22–34.

[4] P. M. Kogge, N. V. Chawla, D. Thain, B. A. Page, and N. A. Butcher,
“Stateful random walks as a graph benchmark,” In Preparation, 2018.

[5] ——, “Jaccard coefficients as a graph benchmark,” In Preparation, 2018.
[6] P. M. Kogge, “Jaccard coefficients as a potential graph benchmark,”

2016 IEEE Int. Parallel and Distributed Processing Symp. Workshops
(IPDPSW), vol. 00, pp. 921–928, 2016.

[7] J. Scripps and C. Trefftz, “Parallelizing an algorithm to find communities
using the jaccard metric,” in Proceedings of the 2015 IEEE International
Conference on Electro/Information Technology. IEEE, May 2015, pp.
4:1–4:8.

[8] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in In In Fourth SIAM International Conference on
Data Mining, 2004.

[9] C. Seshadhri, A. Pinar, and T. G. Kolda, “An in-depth analysis of
stochastic kronecker graphs,” J. ACM, vol. 60, no. 2, pp. 13:1–13:32,
May 2013. [Online]. Available: http://doi.acm.org/10.1145/2450142.
2450149

[10] T. White, Hadoop: the Definitive Guide. O’Reilly Media, 2011.
[11] P. Burkhardt. (2014, Feb.) Asking hard graph questions: Beyond watson:

Predictive analytics and big data. Beyond Watson Workshop. [Online].
Available: http://www.pdl.cmu.edu/SDI/2013/slides/big\ graph\ nsa\
rd\ 2013\ 56002v1.pdf

[12] B. Page and P. M. Kogge, “Scalability of hybrid sparse matrix dense
vector (spmv) multiplication,” in accepted for High Performance Com-
puting Symp. (HPCS), ser. HPCS’18, July. 2018.

[13] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last

reducer,” in Proceedings of the 20th International Conference on World
Wide Web, ser. WWW ’11. New York, NY, USA: ACM, 2011, pp. 607–
614. [Online]. Available: http://doi.acm.org/10.1145/1963405.1963491

