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Abstract—There are presently several graph benchmarks in the
literature, some with hundreds of published processing reports.
They all, however, have several characteristics that make them
of academic, but not necessarily real-world interest. This paper
suggests three additional benchmark Kkernels that are more
realistic in both graph structure, computational complexity, and
support incremental “streaming” versions. For each benchmark,
a reference implementation is reported, along with some initial
scaling data.
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I. INTRODUCTION

A graph is of a set of objects (vertices), and links (edges)
between pairs of objects that represent some sort of relation-
ships. Computing over such graphs is of increasing importance
to a wide spectrum of application areas ranging from “con-
ventional” communication and power networks, transport, and
scheduling, to emerging applications such as social networks,
medical informatics, genomics, and cybersecurity.

While there are several current graph benchmarks, some
with hundreds of reported implementations, most of them
are based on “academic” graph problems, and often have
little direct value to real-world applications, especially when
we want to understand the relative efficiency of different
hardware architectures and configurations. Further, given that
many of these graphs are growing in size, it is critical that
we understand how to do such processing in parallel in an
efficient manner.

This paper discusses three additional benchmarks that have
several relevant characteristics:

o There is some archetypal real-world problem that could
clearly benefit from efficient solutions.

o The basic computational complexity is often greater than
linear in problem size, thus raising the importance of
both alternative algorithms and/or heuristics that can
significantly reduce computation.

o Streaming, versus today’s “batch”, versions are of grow-
ing importance, where computation is performed “incre-
mentally” as changes to the graph are provided.

o Unlike academic benchmarks, graphs of real-world inter-
est often have are heterogeneous in nature, namely there
are multiple classes of vertices, with important edges
being between vertices of two different classes.

These benchmarks include computation of Jaccard coeffi-
cients between two vertices, determination of a set of edges
that form a matching between vertices of two different classes,
and learning of paths in heterogeneous networks.

The rest of this paper is organized as follows. Section
?? discusses some current graph benchmarks. Sections ??
through II discuss each of the proposed benchmarks. Section
?? discusses possible approaches for generating synthetic data
sets for such benchmarks. Section ?? concludes.

For each of the benchmarks there is a discussion of an
archetypal problem that justifies the problem, a formal de-
scription of the problem, variations that may make the problem
more relevant, an estimate of the computationally complexity
of a sequential implementation, a description of streaming
variants, and considerations for parallel implementations. It
is expected that follow on papers for each benchmark will
discuss reference parallel implementations.

II. STATEFUL RANDOM WALKS

A network (also called a flow network or a transportation
network) is a graph where the edges are weighted with
something related to the “capacity” that it may carry, or
has carried. Classical computations over such graphs include
determining the “max flow” between two vertices that nowhere
exceeds any edge capacity. However, newer problems involve
analyzing and predicting traffic patterns within such networks,
especially when they are updated dynamically. When the
edges in the network are weighted by simply “summing” all
flow between two vertices, analysis may miss some more
fundamental behaviors that would have surfaced if the prior
“paths” of flows had been considered. This benchmark is based
on keeping track of such paths, and using path information to
answer graph questions.

A. Archetypal Problem

Consider a graph where the vertices are port cities in the
world, and edges are shipping lanes. Now consider problems
akin to predicting the spread of invasive species that are carried
in the bilge water of ships. To use an example from [1], assume
the amount of shipping from Singapore to LA is roughly the
same as to Seattle. In a “lst order network,” weights on an
edge represent the total number of ships that have taken that
lane between two ports, regardless of where the ships were
before. Thus we might assume (wrongly) that invasive species



on ships that went through Singapore were equally likely to
spread to Seattle and LA. In reality, however, a ship that came
first from Shanghai might be more likely to go to Seattle,
whereas a ship that was in Tokyo before Singapore may be
more likely to go to LA. Thus the probability of spreading
invasive species may be more conditional on how it got to
Singapore rather than just coming from Singapore.

A similar problem is predicting web traffic simply on the
basis of where users go after any one web site. Studies have
shown again that simple 1st order networks that don’t account
for how users got to a web site are poor indicators of where
they go next.
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B. Formal Description
(2] [1]
C. Sequential Complexity
D. Streaming Variants
E. Parallelization Considerations
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