The BFS Kernel:
Applications and
Implementations

Peter M. Kogge

BFS

Graph Exploration

Common graph problem: “explore” region
around some vertex

Exploration: follow edges to see what'’s
reachable

Possible outputs:

— ldentification of reachable vertices
— “labelling” of vertices

— Properties of reachable sub-graph

Options:
— Constraints on “how far”
— Constraints on “which edges”

BFS

Major Variants of Exploration

e Depth-First: Keep jumping from vertex to
vertex until stopping
— And then back up to last vertex and see if any untried
edges
e Breadth-First: Explore in waves
— Explore all edges from current “Frontier”
— Mark as all new vertices as “New Frontier”

— Start over with new frontier when all current one is
searched

e This kernel: Breadth-First

BFS

Example: Airline Routes

e Consider graph with

— Vertices: airports (—17,000 in world):

= Properties: Country, International designation, Control
tower, etc

— Edges as flights between airports (100,000/day):

* Properties: Airline (5,000 different airlines in world), Flight
number, equipment, ...

* Edges are directional
— Note graph changes dynamically

e Possible explorations
— What airports are reachable from some specific one
— What if we constraint # of stops or airlines,

BFS

Example: Six Degrees of Kevin Bacon

e |[MDb Data base

— Vertices: Multiple “classes”
e 8.7M+ people
* 4.8M+ titles of 10 types

— Edges: (u,v) between people and titles
= Person u has had one of 34 roles in title v
« Again directional

e Possible exploration:

— Can a chain of (uy,t;), (Uxty), (Uyty), (Us,ty), .
connect any one person u, to all other people in
database?

— Kevin Bacon: 6 titles away from everyone else
e See https://oracleofbacon.org/

BFS

Other Interesting Applications

e From: https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/
— Search for neighbors in peer-peer networks
— Search engine web crawlers
— Social networks — distance k friends
— GPS navigation to find “neighboring” locations
— Patterns for “broadcasting” in networks

= From Wikipedia: https://en.wikipedia.org/wiki/Breadth-first_search
— Community Detection
— Maze running
— Routing of wires in circuits
— Finding Connected components
— Copying garbage collection, Cheney's algorithm
— Shortest path between two nodes u and v
— Cuthill-McKee mesh numbering
— Maximum flow in a flow network
— Serialization/Deserialization of a binary tree
— Construction of the failure function of the Aho-Corasick pattern matcher.
— Testing bipartiteness of a graph

BFS

Key Kernel: BFS - Breadth First Search

e Given a huge graph
« Start with a root, find all reachable vertices
e Performance metric: TEPS: Traversed Edges/sec

Startingat1:1,0,3,2,9,5
No Flops — just Memory & Networking

BFS

Graph500: www.graph500.org

e Several years of reports on performance
of BFS implementations on
— Different size graphs
— Different hardware configurations

e Standardized graphs for testing

e Standard approach for measuring
— Generate a graph of certain size
— Repeat 64 times
* Select a root
* Find “level” of each reachable vertex
* Record execution time
= TEPS = graph edges / execution time

BFS

Graph500 Graphs

 Kronecker graph generator algorithm
— D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A
recursive model for graph mining, SIAM Data Mining
2004
e Recursively sub-divides adjacency matrix
into 4 partitions A, B, C, D

e Add edges one at a time, choosing
partitions probabilistically
— A =57%, B=19%, C = 19%, D = 5%

e # of generated edges = 16*# vertices
— Average Vertex Degree is 2X this

BFS 9

Graph Sizes

Vertices Bytes
Llevel | Scale Size (Billion) TB | /Vertex

10 26 Toy 0.1 0.02 | 281.8048

11 29 Mini 0.5 0.14 | 281.3952

12 32 Small 43 1.1 | 281472

13 36 | Medium| 687 17.6 | 281.4752

14 39 Large 549.8 141 | 281.475

15 42 Huge 4398.0 1,126 | 281.475

Average | 281.5162

Scale = log2(# vertices)

BFS 10

Notional Sequential Algorithm

e Top-Down search: Keep a “frontier” of
new vertices that have been “touched” but

not “explored”
— Explore them and repeat

Bottom-up search: look at all “untouched
vertices” and see if any of their edges lead
to a touched vertex

— If so, mark as touched, and repeat

Special considerations
— Vertices that have huge degrees

BFS 11

Top-Down

Algorithm 1 Top Down BFS:

V is the set of vertices; E a set of l'l]"_"('.\
1: procedure TorPDOWN-BFS(G . rOOT)
2: Touched + {i‘mu’}

3: Frontier + {l'r:uf}

1: Labels + N-vector of a large integer

5: Labe f[r‘rmf] «— 0

& devel 0 Notional Complexity:
T: while Frontier not empty do

8: Level + =1 O(M)

9: TopDown — Pass(Frontier, Touched, Level)X

10: return

11: procedure ToOPDOWNPASS(TOUCHED., LEVEL)
12 Next « {}

13: for u in Frontier do

14: for all edges (u.v) in E do

15: if v not in Touched then

16: Touched + Touched U {v}
17: Next +— NexrtU {r}

18: Labe f[i': — Level

19: Frontier +— Next

20: return

BFS 12

Bottom Up

Algorithm 2 BottomUp BFS:

V is the set of vertices; E a set of edges

I: procedure BoTTOMUP-BFS(G,ROOT)

2 Touched < {root}

3: Labels <+ N-vector of a large integer

1: Label[root] < 0

5 Level + 0

6 TouchedFlag + True Notional Complexity:
T: while TouchedFlag do

& Level += 1 O(NM)

9: TouchedFlag + BackwardPass(Touched, Level)

10: return

11: procedure BorToMUpPPAss(iNOUT TOUCHED, LEVEL)
12: TouchedFlag + False

13: for v not in Touched do
14: for all edges (u.v) in E do
15: if uin Touched then
16: TouchedFlag <« True
17: Touched +— Touched U v
18: Label[v] « Level
19: return TouchedFlag
BFS 13
Key Observation
e Forward direction requires investigation of
every edge leaving a frontier vertex
— Each edge can be done in parallel
e Backwards direction can stop investigating
edges as soon as 1 vertex in current
frontier is found
— If search edges sequentially, potentially significant
work avoidance
e In any case, can still parallelize over
vertices in frontier
BFS 14

Edges Explored per Level

- By this level,
10} 3 -l Visited edges
3 most vertices now Visited edges (Dir. Opt./LB)
& | touched, so edges - Vertices claimed (both)
- explored mostly
¢ | point backward
8 -
v o
@
o .
o
Yoo
2 near-optimal (optimal is 1
- edge per vertex)
O —
© T
I.O',
d - ;
Few nodes in early | ‘ F ‘ ‘ ‘ ‘ ‘ '

levels mean few edges *-=--- -

Level
Fig. 5: Graph properties at each exploration level.

Checconi and Petrini, “Traversing Trillions ...”

BFS

15

Beamer’s Hybrid Algorithm

Switch between forward & backward steps
— Use forward iteration as long as In is small
— Use backward iteration when Vis is large

Advantage: when

— # edges from vertices in !Vis

— are less than # edges from vertices in In
— then we follow fewer edges overall

Estimated savings if done optimally: up to
10X reduction in edges

http://www.scottbeamer.net/pubs/beamer
-sc2012.pdf

BFS

16

Hybrid Algorithm

Algorithm 3 Hybrid BFS

V is the set of vertic

2 aset of edges

I procedure HyBrin-BFS(G,Ro0T

hed + {root})

{root}
s + N-vector of a large integer

Labelfroot] «+ 0

Level + 0

Ny « 1

M, + outdegree(root)

M, « M M;

while Frontier not empty do

> M,/ajor(Ny < N/B) then
for all u in Frontier do
for all edges (u,v) in E do
if v not in Touched then
Touched + Touchedu {v}

Next + Next
+ Leu

{v} —
Label|v el
Ny + 1
My +=
My — =

else
for all v not in Touched do
for all edg

My + = outdegree(v)
M, indegree(v)
Touched + Touched U Next .
Frontier + Next
return

N; = # vertices in current frontier

M; = # outgoing edges from current frontier
M,= # incoming edges to current untouched
o = edge reduction factor in bottom-up pass
P = vertex reduction factor when going from
bottom-up to top-down

Switch from top-down to bottom-up when:

.'ﬂl-ff < .'aiful.n"lfl
Switch back from bottom-up to top-down when

N; < N/B

BFS

17

