
1

1BFS

The BFS Kernel:
Applications and
Implementations

Peter M. Kogge

Please Sir, I want more

2BFS

Graph Exploration
• Common graph problem: “explore” region

around some vertex
• Exploration: follow edges to see what’s

reachable
• Possible outputs:

– Identification of reachable vertices
– “labelling” of vertices
– Properties of reachable sub-graph

• Options:
– Constraints on “how far”
– Constraints on “which edges”

2

3BFS

Major Variants of Exploration
• Depth-First: Keep jumping from vertex to

vertex until stopping
– And then back up to last vertex and see if any untried

edges

• Breadth-First: Explore in waves
– Explore all edges from current “Frontier”
– Mark as all new vertices as “New Frontier”
– Start over with new frontier when all current one is

searched

• This kernel: Breadth-First

4BFS

Example: Airline Routes
• Consider graph with

– Vertices: airports (~17,000 in world):
• Properties: Country, International designation, Control

tower, etc
– Edges as flights between airports (100,000/day):

• Properties: Airline (5,000 different airlines in world), Flight
number, equipment, …

• Edges are directional
– Note graph changes dynamically

• Possible explorations
– What airports are reachable from some specific one
– What if we constraint # of stops or airlines,
– …

3

5BFS

Example: Six Degrees of Kevin Bacon

• IMDb Data base
– Vertices: Multiple “classes”

• 8.7M+ people
• 4.8M+ titles of 10 types

– Edges: (u,v) between people and titles
• Person u has had one of 34 roles in title v
• Again directional

• Possible exploration:
– Can a chain of (u1,t1), (u2,t1), (u2,t2), (u3,t2), …

connect any one person u1 to all other people in
database?

– Kevin Bacon: 6 titles away from everyone else

• See https://oracleofbacon.org/

6BFS

Other Interesting Applications
• From: https://www.geeksforgeeks.org/applications-of-breadth-first-traversal/

– Search for neighbors in peer-peer networks
– Search engine web crawlers
– Social networks – distance k friends
– GPS navigation to find “neighboring” locations
– Patterns for “broadcasting” in networks

• From Wikipedia: https://en.wikipedia.org/wiki/Breadth-first_search
– Community Detection
– Maze running
– Routing of wires in circuits
– Finding Connected components
– Copying garbage collection, Cheney's algorithm
– Shortest path between two nodes u and v
– Cuthill–McKee mesh numbering
– Maximum flow in a flow network
– Serialization/Deserialization of a binary tree
– Construction of the failure function of the Aho-Corasick pattern matcher.
– Testing bipartiteness of a graph

4

7BFS

2
0

9

Key Kernel: BFS - Breadth First Search
• Given a huge graph
• Start with a root, find all reachable vertices
• Performance metric: TEPS: Traversed Edges/sec

1
3

5

7

8e0 e1

e2
e3

e4
e5

e6

e7e8

Starting at 1: 1, 0, 3, 2, 9, 5

No Flops – just Memory & Networking

8BFS

Graph500: www.graph500.org
• Several years of reports on performance

of BFS implementations on
– Different size graphs
– Different hardware configurations

• Standardized graphs for testing
• Standard approach for measuring

– Generate a graph of certain size
– Repeat 64 times

• Select a root
• Find “level” of each reachable vertex
• Record execution time
• TEPS = graph edges / execution time

5

9BFS

Graph500 Graphs
• Kronecker graph generator algorithm

– D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A
recursive model for graph mining, SIAM Data Mining
2004

• Recursively sub-divides adjacency matrix
into 4 partitions A, B, C, D

• Add edges one at a time, choosing
partitions probabilistically
– A = 57%, B = 19%, C = 19%, D = 5%

• # of generated edges = 16*# vertices
– Average Vertex Degree is 2X this

10BFS

Graph Sizes

Scale = log2(# vertices)

Level Scale Size

Vertices

(Billion) TB

Bytes

/Vertex

10 26 Toy 0.1 0.02 281.8048

11 29 Mini 0.5 0.14 281.3952

12 32 Small 4.3 1.1 281.472

13 36 Medium 68.7 17.6 281.4752

14 39 Large 549.8 141 281.475

15 42 Huge 4398.0 1,126 281.475

Average 281.5162

6

11BFS

Notional Sequential Algorithm
• Top-Down search: Keep a “frontier” of

new vertices that have been “touched” but
not “explored”
– Explore them and repeat

• Bottom-up search: look at all “untouched
vertices” and see if any of their edges lead
to a touched vertex
– If so, mark as touched, and repeat

• Special considerations
– Vertices that have huge degrees

12BFS

Top-Down

Notional Complexity:
O(M)

7

13BFS

Bottom Up

Notional Complexity:
O(NM)

14BFS

Key Observation
• Forward direction requires investigation of

every edge leaving a frontier vertex
– Each edge can be done in parallel

• Backwards direction can stop investigating
edges as soon as 1 vertex in current
frontier is found
– If search edges sequentially, potentially significant

work avoidance

• In any case, can still parallelize over
vertices in frontier

8

15BFS

Edges Explored per Level

Few nodes in early
levels mean few edges

By this level,
most vertices now
touched, so edges
explored mostly
point backward Going backwards from

untouched vertices, and
stopping on first touch,
reduces # edges covered
to near-optimal (optimal is 1

edge per vertex)

Checconi and Petrini, “Traversing Trillions …”

16BFS

Beamer’s Hybrid Algorithm
• Switch between forward & backward steps

– Use forward iteration as long as In is small
– Use backward iteration when Vis is large

• Advantage: when
– # edges from vertices in !Vis
– are less than # edges from vertices in In
– then we follow fewer edges overall

• Estimated savings if done optimally: up to
10X reduction in edges

• http://www.scottbeamer.net/pubs/beamer
-sc2012.pdf

9

17BFS

Hybrid Algorithm

• Nf = # vertices in current frontier
• Mf = # outgoing edges from current frontier
• Mu= # incoming edges to current untouched
• α = edge reduction factor in bottom-up pass
• β = vertex reduction factor when going from

bottom-up to top-down

Switch from top-down to bottom-up when:

Switch back from bottom-up to top-down when

