Centrality

Peter M. Kogge

Centrality

- Id "most important" vertices in a graph
- "Importance" has multiple possibilities
 - Importance to "flow" in graph as a network
 - Importance to "cohesiveness" of graph/subgraph
- Choice is app dependent

https://en.wikipedia.org/wiki/Centrality

Network Flows

- "Something" "flows" from vertex to vertex over edges thru vertices
 - Indivisible transfers from one vertex to another
 - Duplication so source and destination have "copies"
 - Broadcast over all outgoing edges
- Options on constraining "path" of flow
 - **Geodesics**: shortest path
 - **Paths**: no vertex visited more than once
 - Trails: no edge traversed more than once
 - Walks: repeated vertices/edges possible
- Alternative on how centrality constructed
 - Radial: walks start/end on specific vertices
 - Medial: walks that "pass thru" some vertex

Vertex Centrality Metrics

Degree(v): degree of edges incident on v

- In-degree: measure of "friendship"
- Out-degree: measure of "gregariousness"
- Closeness(v): reciprocal of sum of length of shortest path between v and all other vertices
 - Often normalized by dividing by N-1
- Harmonic(v): sum of reciprocal of length of shortest path between v and all other vertices

Vertex Betweenness Centrality

- Relates to "how important" vertex is to "shortest paths"
- For vertex v, iterate over all vertex pairs (s,t)
 - Compute shortest path s and t $\sigma(s,t)$
 - Count # that go thru v
 - Form fraction
 - Add to betweenness for v
- Variation: Katz centrality
 - Weight distant edges on paths lower

https://en.wikipedia.org/wiki/Centrality#/media/File:Graph_betweenness.svg

Eigenvector Centrality

- Assigns score x[v] to each vertex v based on scores of vertices to which it is connected
- Assume A[u,v] = 1 if edge from u to v
- Then $Ax = \lambda x$ (an eigenvector)
- Example: PageRank

Other Centrality Metrics

- Percolation PC^t(v): importance of a vertex as something "spreads" thru graph
 - Each "time step" advances the spread
- Cross-clique X(v): # of cliques of which v is a member
- Freeman centralization: Uses some other centrality metric to compare how "central" most central vertices are
- **Dissimilarity**: like eigenvector but with multiplication by a dissimilarity matrix