
1 BFS

Community Detection:
Clustering

Peter M. Kogge

Please Sir, I want more

2 BFS

Real World Graphs

• Subsets of vertices tend to “cluster”

– A.K.A form “Communities”

• Communities then studied independently

– Look at structure of subgraph

– Particularly look for vertices “at center”
(Centrality)

• Hierarchical decomposition also possible

– Communication between clusters may be
“different” from within cluster

• Splitting graphs into communities called
“partitioning”

• Survey: “Community detection in graphs”

– https://www.sciencedirect.com/science/articl
e/pii/S0370157309002841#!

“Community detection in graphs” Fig. 1

3 BFS

Real World Problems

• Social networks

• Proteins that perform same function in a cell

• Co-locating web pages with similar topics

• Clusters of customers with similar buying

• Ad hoc networks formed by interacting
nodes in same region

• Organization in business firms
– Pyramidal at top level

– Departments more like clusters (with “central” manager)

• Parallel computing: allocate tasks to nodes
to minimize communication

Paper: 78-81,156-161

4 BFS

Sample Graphs

Zachary’s Karate Club

Collaboration

between scientists

at Santa Fe

Institute

Network of

dolphins when

seen “together”

“Community detection in graphs” Fig. 2

5 BFS

More Graphs

“Community detection in graphs” Fig. 3

Protein-protein

interaction

“Community detection in graphs” Fig. 4

Hyperlinks between web pages

6 BFS

More Graphs

“Community detection in graphs” Fig. 5

Word Associations

“Community detection in graphs” Fig. 6

Bipartite graphs:

Black: people

White: events

Intelligence

Colorse

Light

Astronomy

7 BFS

Clustering

• Terms like community not well-defined
– Often imprecise and app-dependent

• Id of clusters often reasonable with “sparse
graphs,” i.e. M (edges) of O(N)

• If M >> N (many edges), networks become
too homogeneous

• Key discriminator: what do edges connect
– Internal: between two vertices in same community

– External: between two vertices in different
communities

8 BFS

Edge Density

• g a subgraph of G forming a community
– |G| = n and |g|= ng

• k(u) = degree of vertex u in subgraph g
– kint(u) = # of edges from u to others in its community

– kext(u) = # of edges from u to vertices not in g

– k = kint(u) + kext(u)

• Density:
– Average link: δ(g) = # edges of g / (ng(ng-1)/2)

– Intra-cluster: δint(g) = #_intra-cluster_edges / (ng(ng-1)/2)

– Inter-cluster: δext(g) = #_inter-cluster_edges / (ng(ng-1)/2)

– Note: (ng(ng-1)/2) is # of edges in g if fully connected

• Expect: δint(g) > δ(g) > δext(g)
– The larger the δint(g)- δext(g), the “more connected”

9 BFS

Definitions of “Locality”

• Community has “few” edges to rest of graph

• Maximal subgraphs: Adding new vertices does not
improve community criteria

• One “ideal” definition: a clique

– All vertices have edges to each other

– But all vertices are “symmetric”

– Other communities have “center”

– Finding cliques is NP-Complete

• Relaxed definition: n-clique

– Distance between any two vertices ≤ n

– 1-clique is a clique

• n-clan: n-clique with diameter ≤ n

• n-club: n-clique maximal subgraph of diameter n

http://mathworld.wolfram.com/images/eps-gif/CompleteGraphs_801.gif

10 BFS

Adjacency of Vertices

• Vertex must be connected to some minimal
number of vertices in community

• k-plex: each vertex connected to all but at
most k others in community

• k-core: connected to at least k others

• LS-set or strong community:

– For all u in community kint(u)>kext(u)

11 BFS

Algorithms

• Graph partitioning: cut into subgrahs such that
number of cross subgroup edges (cut set) is
minimal

– Minimal bisection: recursively cut in half
• Kernigan-Lin algorithm

– Spectral bisection: use spectrum of Laplacian matrix

• Hierarchical Clustering: find “similar” subgraphs

• Divisive: find edges between communities & delete
– Girvan Newman algorithm

• Others

– Partitional, Spectral Clustering

– Modularity optimization

– Simulated annealing

– Extremal optimization

12 BFS

Benchmark Graphs

• Planted L-partition model
– L groups of g vertices each

– Intra-group vertices linked with probability pin

– Inter-group vertices linked with probability pout

– When pin > pout graph has “community” structure

“Community detection in graphs” Fig. 30

13 BFS

Metrics When Clusters Known

• Fraction of correctly classified vertices

• Pair counting: # of pairs in same
partition in both predicted and known
– Rand Index

– Mirkin Metric

– Jaccard Index

• Cluster Matching: largest overlaps
between pairs of clusters of different
partitions

• Information Theory: compute
“information theory” of partitions

14 BFS

Kernigan-Lin Algorithm

• Goal: partition graph into 2 nearly equal
subgraphs that minimize weight of
crossing from one to other
– If unweighted, minimize crossing edge count

• Repeated Greedy Algorithm
– Keep a running partition and crossing weight

– Pair up vertices from 2 partitions

– Compute reduction in crossing weight

– Choose pair that reduces crossing weight

– Repeat

15 BFS

Girvan Newman algorithm

• Edge Betweenness of an edge e: # of
shortest paths between 2 vertices thru e
– Edges between clusters will have a “lot” of shortest

paths thru them

• Algorithm:
– Compute edge betweenness of all edges

– Remove edge with highest betweenness

– Recalculate

– Repeat

• When no paths between some edges are
found, we have found clusters

