Community Detection: Clustering

Peter M. Kogge

Real World Graphs

- Subsets of vertices tend to "cluster"
 - A.K.A form "Communities"
- Communities then studied independently
 - Look at structure of subgraph
 - Particularly look for vertices "at center" (Centrality)
- Hierarchical decomposition also possible
 - Communication between clusters may be "different" from within cluster
- Splitting graphs into communities called "partitioning"
- Survey: "Community detection in graphs"
 - https://www.sciencedirect.com/science/articl e/pii/S0370157309002841#!

"Community detection in graphs" Fig. 1

Real World Problems

- Social networks
- Proteins that perform same function in a cell
- Co-locating web pages with similar topics
- Clusters of customers with similar buying
- Ad hoc networks formed by interacting nodes in same region
- Organization in business firms
 - Pyramidal at top level
 - Departments more like clusters (with "central" manager)
- Parallel computing: allocate tasks to nodes to minimize communication
 Paper: 78-81,156-161

Sample Graphs

More Graphs

"Community detection in graphs" Fig. 3

Hyperlinks between web pages

"Community detection in graphs" Fig. 4

More Graphs

Word Associations

"Community detection in graphs" Fig. 5

Bipartite graphs: Black: people White: events

"Community detection in graphs" Fig. 6

Clustering

- Terms like community not well-defined
 Often imprecise and app-dependent
- Id of clusters often reasonable with "sparse graphs," i.e. M (edges) of O(N)
- If M >> N (many edges), networks become too homogeneous
- Key discriminator: what do edges connect
 - Internal: between two vertices in <u>same</u> community
 - External: between two vertices in <u>different</u> communities

Edge Density

- g a subgraph of G forming a community
 |G| = n and |g| = n_g
- k(u) = degree of vertex u in subgraph g
 - k_{int}(u) = # of edges from u to others in its community
 - k_{ext}(u) = # of edges from u to vertices not in g
 - $k = k_{int}(u) + k_{ext}(u)$
- Density:
 - Average link: $\delta(g) = \#$ edges of g / $(n_g(n_g-1)/2)$
 - Intra-cluster: $\delta_{int}(g) = #_intra-cluster_edges / (n_g(n_g-1)/2)$
 - Inter-cluster: $\delta_{ext}(g) = #_inter-cluster_edges / (n_g(n_g-1)/2)$
 - Note: $(n_g(n_g-1)/2)$ is # of edges in g if fully connected
- Expect: $\delta_{int}(g) > \delta(g) > \delta_{ext}(g)$
 - The larger the $\delta_{int}(g)$ $\delta_{ext}(g)$, the "more connected" BFS

Definitions of "Locality"

- Community has "few" edges to rest of graph
- Maximal subgraphs: Adding new vertices does not improve community criteria
- One "ideal" definition: a <u>clique</u>
 - All vertices have edges to each other
 - But all vertices are "symmetric"
 - Other communities have "center"
 - Finding cliques is NP-Complete
- Relaxed definition: n-clique
 - Distance between any two vertices $\leq n$
 - 1-clique is a clique
- **n-clan**: n-clique with diameter \leq n
- n-club: n-clique maximal subgraph of diameter n BFS

http://mathworld.wolfram.com/images/eps-gif/CompleteGraphs_801.gif

Adjacency of Vertices

- Vertex must be connected to some minimal number of vertices in community
- k-plex: each vertex connected to all but at most k others in community
- k-core: connected to at least k others
- LS-set or strong community:
 - For all u in community $k_{int}(u) > k_{ext}(u)$

Algorithms

- Graph partitioning: cut into subgrahs such that number of cross subgroup edges (cut set) is minimal
 - Minimal bisection: recursively cut in half
 - Kernigan-Lin algorithm
 - Spectral bisection: use spectrum of Laplacian matrix
- Hierarchical Clustering: find "similar" subgraphs
- Divisive: find edges between communities & delete
 - Girvan Newman algorithm
- Others
 - Partitional, Spectral Clustering
 - Modularity optimization
 - Simulated annealing
 - Extremal optimization

Benchmark Graphs

• Planted L-partition model

- L groups of g vertices each
- Intra-group vertices linked with probability p_{in}
- Inter-group vertices linked with probability p_{out}
- When $p_{in} > p_{out}$ graph has "community" structure

Metrics When Clusters Known

- Fraction of correctly classified vertices
- Pair counting: # of pairs in same partition in both predicted and known
 - Rand Index
 - Mirkin Metric
 - Jaccard Index
- Cluster Matching: largest overlaps between pairs of clusters of different partitions
- **Information Theory**: compute "information theory" of partitions

Kernigan-Lin Algorithm

- Goal: partition graph into 2 nearly equal subgraphs that minimize weight of crossing from one to other
 - If unweighted, minimize crossing edge count
- Repeated Greedy Algorithm
 - Keep a running partition and crossing weight
 - Pair up vertices from 2 partitions
 - Compute reduction in crossing weight
 - Choose pair that reduces crossing weight
 - Repeat

Girvan Newman algorithm

- Edge Betweenness of an edge e: # of shortest paths between 2 vertices thru e
 - Edges between clusters will have a "lot" of shortest paths thru them
- Algorithm:
 - Compute edge betweenness of all edges
 - Remove edge with highest betweenness
 - Recalculate
 - Repeat
- When no paths between some edges are found, we have found clusters