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Real World Graphs 

• Subsets of vertices tend to “cluster” 

– A.K.A form “Communities” 

• Communities then studied independently 

– Look at structure of subgraph 

– Particularly look for vertices “at center” 
(Centrality) 

• Hierarchical decomposition also possible 

– Communication between clusters may be 
“different” from within cluster 

• Splitting graphs into communities called 
“partitioning” 

• Survey: “Community detection in graphs” 

– https://www.sciencedirect.com/science/articl
e/pii/S0370157309002841#! 

“Community detection in graphs” Fig. 1 
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Real World Problems 

• Social networks 

• Proteins that perform same function in a cell 

• Co-locating web pages with similar topics 

• Clusters of customers with similar buying 

• Ad hoc networks formed by interacting 
nodes in same region 

• Organization in business firms 
– Pyramidal at top level 

– Departments more like clusters (with “central” manager) 

• Parallel computing: allocate tasks to nodes 
to minimize communication 

 

 

Paper: 78-81,156-161 
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Sample Graphs 

Zachary’s Karate Club 

Collaboration 

between scientists 

at Santa Fe 

Institute 

Network of 

dolphins when 

seen “together” 

“Community detection in graphs” Fig. 2 
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More Graphs 

“Community detection in graphs” Fig. 3 

Protein-protein 

interaction 

“Community detection in graphs” Fig. 4 

Hyperlinks between web pages 
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More Graphs 

“Community detection in graphs” Fig. 5 

Word Associations 

“Community detection in graphs” Fig. 6 

Bipartite graphs: 

Black: people 

White: events 

Intelligence 

Colorse 

Light 

Astronomy 
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Clustering 

• Terms like community not well-defined 
– Often imprecise and app-dependent 

• Id of clusters often reasonable with “sparse 
graphs,” i.e. M (edges) of O(N) 

• If M >> N (many edges), networks become 
too homogeneous 

• Key discriminator: what do edges connect 
– Internal: between two vertices in same community 

– External: between two vertices in different 
communities 
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Edge Density 

• g a subgraph of G forming a community 
– |G| = n and |g|= ng 

• k(u) = degree of vertex u in subgraph g 
– kint(u) = # of edges from u to others in its community 

– kext(u) = # of edges from u to vertices not in g 

– k = kint(u) + kext(u) 

• Density: 
– Average link: δ(g) = # edges of g / (ng(ng-1)/2) 

– Intra-cluster: δint(g) = #_intra-cluster_edges / (ng(ng-1)/2) 

– Inter-cluster: δext(g) = #_inter-cluster_edges / (ng(ng-1)/2) 

– Note: (ng(ng-1)/2) is # of edges in g if fully connected 

• Expect: δint(g) > δ(g) > δext(g)  
– The larger the δint(g)- δext(g), the “more connected” 
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Definitions of “Locality” 

• Community has “few” edges to rest of graph 

• Maximal subgraphs: Adding new vertices does not 
improve community criteria 

• One “ideal” definition: a clique 

– All vertices have edges to each other 

– But all vertices are “symmetric” 

– Other communities have “center” 

– Finding cliques is NP-Complete 

• Relaxed definition: n-clique 

– Distance between any two vertices ≤ n 

– 1-clique is a clique 

• n-clan: n-clique with diameter ≤ n 

• n-club: n-clique maximal subgraph of diameter n 

http://mathworld.wolfram.com/images/eps-gif/CompleteGraphs_801.gif 
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Adjacency of Vertices 

• Vertex must be connected to some minimal 
number of vertices in community 

• k-plex: each vertex connected to all but at 
most k others in community 

• k-core: connected to at least k others 

• LS-set or strong community:  

– For all u in community kint(u)>kext(u)  
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Algorithms 

• Graph partitioning: cut into subgrahs such that 
number of cross subgroup edges (cut set) is 
minimal 

– Minimal bisection: recursively cut in half 
• Kernigan-Lin algorithm 

– Spectral bisection: use spectrum of Laplacian matrix 

• Hierarchical Clustering: find “similar” subgraphs 

• Divisive: find edges between communities & delete 
– Girvan Newman algorithm 

• Others 

– Partitional, Spectral Clustering 

– Modularity optimization 

– Simulated annealing 

– Extremal optimization 
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Benchmark Graphs 

• Planted L-partition model 
– L groups of g vertices each 

– Intra-group vertices linked with probability pin  

– Inter-group vertices linked with probability pout  

– When pin > pout graph has “community” structure 

“Community detection in graphs” Fig. 30 
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Metrics When Clusters Known 

• Fraction of correctly classified vertices 

• Pair counting: # of pairs in same 
partition in both predicted and known 
– Rand Index 

– Mirkin Metric 

– Jaccard Index 

• Cluster Matching:  largest overlaps 
between pairs of clusters of different 
partitions 

• Information Theory: compute 
“information theory” of partitions 
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Kernigan-Lin Algorithm 
 

• Goal: partition graph into 2 nearly equal 
subgraphs that minimize weight of 
crossing from one to other 
– If unweighted, minimize crossing edge count 

• Repeated Greedy Algorithm 
– Keep a running partition and crossing weight 

– Pair up vertices from 2 partitions 

– Compute reduction in crossing weight 

– Choose pair that reduces crossing weight 

– Repeat 
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Girvan Newman algorithm 

• Edge Betweenness of an edge e: # of 
shortest paths between 2 vertices thru e 
– Edges between clusters will have a “lot” of shortest 

paths thru them 

• Algorithm: 
– Compute edge betweenness of all edges 

– Remove edge with highest betweenness 

– Recalculate 

– Repeat 

• When no paths between some edges are 
found, we have found clusters 


