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Real World Graphs

Subsets of vertices tend to “cluster”
- A.K.A form “"Communities”

Communities then studied independently .-

- Look at structure of subgraph i ;‘T\h
— Particularly look for vertices “at center” ','-"----__:\_.,fr___ X
(Centrality) -V
Hierarchical decomposition also possible M r
- Communication between clusters may be RN
“different” from within cluster {:_-t“* '
Splitting graphs into communities called | o
“partitioning” I

“Community detection in graphs” Fig. 1

Survey: “"Community detection in graphs”

- https://www.sciencedirect.com/science/articl
e/pii/S0370157309002841 #!
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Real World Problems

Social networks
Proteins that perform same function in a cell

Co-locating web pages with similar topics
Clusters of customers with similar buying

Ad hoc networks formed by interacting
nodes in same region

Organization in business firms
— Pyramidal at top level
— Departments more like clusters (with “central” manager)

Parallel computing: allocate tasks to nodes

to minimize communication

Paper: 78-81,156-161
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Sample Graphs
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“Community detection in graphs” Fig. 2
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More Graphs

Protein-protein
interaction

Hyperlinks between web pages

“Community detection in graphs” Fig. 3

“Community detection in graphs” Fig. 4
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More Graphs

Word Associations

Bipartite graphs:
Black: people
White: events

uytl

“Community detection in graphs” Fig. 6
“Community detection in graphs” Fig. 5
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Clustering

e Terms like community not well-defined
— Often imprecise and app-dependent

e Id of clusters often reasonable with “sparse
graphs,” i.e. M (edges) of O(N)

e If M >> N (many edges), networks become
too homogeneous

e Key discriminator: what do edges connect
- Internal: between two vertices in same community

— External: between two vertices in different
communities
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Edge Density

g a subgraph of G forming a community
- |G| = nand [g]|= n,

k(u) = degree of vertex u in subgraph g
- k;(u) = # of edges from u to others in its community

- ko, (u) = # of edges from u to vertices not in g
-k = I(int(u) + kext(u)

Density:
— Average link: 8(g) = # edges of g / (ny(n,-1)/2)
- Intra-cluster: 9,,,(g) = #_intra-cluster_edges / (ny(n,-1)/2)

— Inter-cluster: 3.,:(g) = #_inter-cluster_edges / (n,(n,-1)/2)
- Note: (ng4(ng,-1)/2) is # of edges in g if fully connected

EXpeCt: 6int(g) > 6(9) > 6ext(g)

— The larger the 0,,,(g)- 0.(9), the "more connected”
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Definitions of “Locality”

Community has “few” edges to rest of graph

Maximal subgraphs: Adding new vertices does not
Improve community criteria

III

One “ideal” definition: a clique

— All vertices have edges to each other _‘
— But all vertices are “"symmetric” = K s
— Other communities have “center” m '
- Finding cliques is NP-Complete f

Relaxed definition: n-clique | - |
— Distance between any two vertices < n
- 1-clique is a clique

n-clan: n-cligue with diameter < n

n-club: n-cligue maximal subgraph of diameter n
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Adjacency of Vertices

Vertex must be connected to some minimal
number of vertices in community

k-plex: each vertex connected to all but at
most k others in community

k-core: connected to at least k others

LS-set or strong community:
— For all u in community ki .(u)>k..(u)

BFS
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Algorithms

Graph partitioning: cut into subgrahs such that
number of cross subgroup edges (cut set) is
minimal
— Minimal bisection: recursively cut in half

e Kernigan-Lin algorithm
— Spectral bisection: use spectrum of Laplacian matrix

Hierarchical Clustering: find “similar” subgraphs

Divisive: find edges between communities & delete
- Girvan Newman algorithm

Others

— Partitional, Spectral Clustering
— Modularity optimization
— Simulated annealing

— Extremal optimization
BFS
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Benchmark Graphs

Planted L-partition model

L groups of g vertices each

Intra-group vertices linked with probability p;,
Inter-group vertices linked with probability p,:
When p,, > py, graph has "community” structure

“Community detection in graphs” Fig. 30

BFS

12



Metrics When Clusters Known

Fraction of correctly classified vertices

Pair counting: # of pairs in same

partition in both predicted and known
— Rand Index

— Mirkin Metric

— Jaccard Index

Cluster Matching: largest overlaps
between pairs of clusters of different
partitions

Information Theory: compute
“information theory” of partitions

BFS
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Kernigan-Lin Algorithm

e Goal: partition graph into 2 nearly equal
subgraphs that minimize weight of

crossing from one to other
— If unweighted, minimize crossing edge count

e Repeated Greedy Algorithm
— Keep a running partition and crossing weight
— Pair up vertices from 2 partitions
— Compute reduction in crossing weight
— Choose pair that reduces crossing weight
— Repeat
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Girvan Newman algorithm

e Edge Betweenness of an edge e: # of

shortest paths between 2 vertices thru e
— Edges between clusters will have a “lot” of shortest

paths thru them
e Algorithm:
- Compute edge betweenness of all edges

- Remove edge with highest betweenness
— Recalculate

— Repeat

e When no paths between some edges are
found, we have found clusters

BFS
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