
1

1KEL

KEL

Peter M. Kogge

Please Sir, I want more

2KEL

Background
• KEL = Knowledge Engineering Language
• Developed by David Bayliss, Lexis Nexis

Risk Solutions Chief Data Scientist
• Target: Large scale graph analytics on

large distributed systems
• Outgrowth of prior ECL language

– Enterprise Control Language
– Built for Big Data processing (Hadoop on steroids)

• KEL Lite available for free download:
https://hpccsystems.com/download/free-modules/kel-lite

2

3KEL

Quote
• “KEL presumes that the user wants
• control over the logical data model, the

analytic logic and the mathematics
• however, KEL also presumes that the user

doesn't want to concern themselves with
the details of
– algorithm selection,
–process construction,
– the physical data model
– or key building.”

4KEL

KEL Properties
• Expresses graphs as tables

– Vertices: Tables of entities
– Edges: Tables of associations

• Both may have “Properties” – extra columns
• Declarative: specify what not how
• “Logic statements” specify properties of new

subgraphs in Prolog-like combinations of old
• KEL tool chain creates parallel computation

DAGs to pipeline data thru multiple steps

3

5KEL

Sample Code: Jaccard

Define Graph

Define a new property

Assert what a new type of edge must look like

6KEL

Lexis Nexis’ Parallel Platforms
• Entity data kept in huge persistent tables

– Often with 1,000s of columns
– Distributed over 100s of node

• Compilation process
– KEL source transformed into ECL source
– ECL transformed into C++ w’ parallel libs
– Parallel C++ runs in SPMD mode

• THOR: runs “offline” on 400+ node systems
– Batch analytic processing over large data sets
– Large distributed parallel file system
– Leaves data sets for queries in indexed files

• ROXIE: runs “online” on smaller system
– User queries using output files from THOR
– Dynamically interrogate indexed files
– Can perform localized computation

Software Architecture:
https://upload.wikimedia.org/wikipedia/
commons/0/02/Fig4b_HPCC.jpg

4

7KEL

Statement Types
• Entity Declarations: vertex classes
• Association Declarations: edge classes
• Property Definitions: define values to be

associated with entities/associations
– Extra “columns” in table representation

• Model Definitions: subsets of properties
• Input/Output of graphs
• Assertion Statements: define new subgraphs
• Query statements

8KEL

Defining Graph Classes
Name of a vertex class

Name of a vertex class

Typically two entity classes:
source vertex type
destination vertex type

A list of properties
and format for storage
on external file system

Unique ID: property of
a vertex class that uniquely
identifies a vertex

5

9KEL

Inputting Graphs

List of instance classes from which
data in this file will be derived

Defines two classes of vertices and one class of edges

Take the data from the IMBD database and extract from each row
entries for Actor, entrices for Movie, and edges between them

10KEL

Assertion Statements

• Predicate is a boolean expression over properties
of vertices or edges

• Assertion defines logical relationships that a
graph should have
– If all predicates in predicate list are true,
– then so must all productions
– Even if that requires modifying graphs

• Predicates & productions use Pattern Variables as
place-holders for values in actual entries

Asserts new vertex
Asserts property
must have some value

6

11KEL

Example of Assertions
And Pattern Variables

If someone has a Parent edge to someone else
Then there must also be an Ancestor edge

If someone is and ancestor of someone who is an ancestor of a 3rd person
Then the 1st person is an ancestor of the 3rd

12KEL

Aggregates
• Using “$” as postfix on property in

expressionsignals that some function to be
applied to all matching entries

• E.g. $max, $min, $ave

7

13KEL

Samples of Queries

14KEL

Sample Code: Jaccard
Properties

MyNeighbors property is
out-degree of edge type
ResidesAt

Gamma edge is defined to be
between two Persons, with
property =Jaccard coefficient

8

15KEL

Execution Model
• Create DAG of Program – Bottom Up
• Start with entities needed by Query
• Id all statements that define instances of

those entities
• Repeat up until the top
• ID USE statements that provide the data
• Create program that

– Spreads USE data across all nodes
– Streams that data thru DAG in parallel & pipelined
– Save new graphs needed by QUERYs

