Overview: Graphs
& Linear Algebra

Peter M. Kogge
Material based heavily on the Class Book
“Graph Theory with Applications...” by Deo
and
“Graphs in the Language of Linear Algebra:
Applications, Software, and Challenges”
Ed. by Jeremy Kepner and John Gilbert!

_New_Ideas_in_Sparse_Matrix-Matrix !

Graphs & Linear Algebra

Conventional
Matrix Operations

Good Tutorial:
https://stattrek.com/matrix-algebra/matrix.aspx
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Basic Matrix Operations

e Pointwise operations: A, B both NxM
- If C = A + B, then C[i,j] = A[i,j] + BI[i,j]

e Where + is “natural” scalar addition, And + is matrix addition
e WrittenC=A .+ B

- Same for C = A*B where C[i,j] = Ali,j] * B[i,j]
e WrittenC=A.*B
e Scalar-Matrix operations: s a scalar, A NxM
-IfC=s+ A, C[i,jl = s + A[i,j]
- Similar for C = s*A (sometimes written sA) or A*s

e Vector Scaling: v N elt vector, A NxM
- If C = v.*A, then C[i,j] = V[i]*A[i,j]
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More Basic Matrix Operations

e Matrix Multiplication: A is NxM, B is MxR
- If C = AxB (also written just AB)
- C[i, k] = A[i,1]*B[1,k] + A[i,2]*B[2,k] + ...
A[i,NT*B[N,k]
- Written C = A+.*B
- Either A or B, or both, could be vectors Nx1, Mx1

e Matrix Exponentiation: A NxN
- If C = Ak, then C = A(A(A...(AA)...) k times

e Matrix Transpose: A is NxM
- If C = AT, then C is MxN, C[i,j] = A[j,i]
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More Basic Matrix Operations

e Inner Product: X,y of length N
- Also written xey

e QOuter Product: x of length N, y length M
- If C = x oy, then C[i,j] = x[i]*Yy[j], an NxM matrix

e Diagonalization: v a N elt vector
- If C - diag(v), then C[i,i] = Vv[i]; C[i,j] = 0, i!=j
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Matrix Operation Properties

e If A, B, matrices of same dimensions
- A+ B =B + A (elt-by-elt addition is commutative)
- A+ (B+C)=(A+ B)+ C (also associative)
- Likewise for elt by elt multiplication
e If Ais NxM, B is MxR, C is RxQ:
- A(BC) = (AB)C (associative)
e If Ais NxN, I an NxN identity matrix
- Al = IA = A (I is a multiplicative identity)
- A1A = AAt = Tif Al exists
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Kronecker Product

e Assume A is MxN, B is PxQ

e C=A®Bis (M*P)x(N*Q)
- Replace each A[s,t] by A[s,t]B (replace scalar by matrix)
- C[i,j]1 = A[s,t]*B[u,v],i=(s-1) P+ u; j = (t-1)Q + v
- A®k= AQAQRA ... A

apnB --- a;;,B
A B = : .. : .
-'ﬂmlB fl?rl?rB_
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Linear Algebra Operations

Solve for x in Ax = b
— Gaussian Elimination
- LU matrix decomposition

Inverse Al of A where AA'l = A1A =1

Determinant of A, |A|
- Cramer’s rule for 2x2: A[1,1]A[2,2]-A[1,2]A[2,1]
- Recursively apply for bigger matrices

Eigenvectors and values: Ax = AX
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Row Echelon Form

Matrix A is in row echelon form if For row i,
- Ali,1] = A[i,2] = ... A[i,i-11 =0

- Ali,i]=1

— Rows with all 0’s at bottom

Reduced row echelon if A[i,i] only non-zero

Any matrix can be converted to row echelon:
- Fori=1to N
e Find first row j (j = i) with A[j,i]!=0
e Swap rows i and j
e Divide each element of new row i by A[i,i]
e For k>i, multiply row i by A[k,i] and subtract from row k

Basis for Gauss Seidel method to solve Ax=b
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Subspaces and Rank

A set of vectors is linearly independent if
no one is a weighted sum of the others

Rank of a matrix = # of independent rows

(or columns)
- Compute by forming row echelon & count non-zero rows

Full rank: when all rows independent

NxN matrix invertible iff rank = N
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Infinite Matrix Sums

e Common problem: compute D = 3,_; ,AX
-D=T+A+A2+ A3+ ...

e Instead look at D - DA =
~T+A+AZ+ A+ .. -A-A2-A3- =1

e ThusI =D -DA=D(I -A)

e OrD=(I-A)1

e Often nasty to compute accurately
— Does not converge

e Alternative if all we care about is whether
D[i,j] is O or not

- To compute D =1 + aA +(aA)2 + (aA)3 + ...

- Compute D = (I - aA)!
Graphs & Linear Algebra
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Graphs as Matrices
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Adjacency Matrix
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| Book Chap. 7.9 |

Alu, v] =1 is edge from vertex u to vertex 4
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Simple Adjacency Properties
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Out-degree(u) = sum across row u
In-degree(v) = sum down column v
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Adjacency Observations
e Undirected graph: A[u, v] = Alv, u]
— Matrix is symmetric
e Weighted graph: A[u, v] = weight on (u,v)

e Transpose: AT[v,u] = A[u,V]
- I=0if edge fromutov

1 2 3 4 5 6 7 AT 1 2 3 4 5 6 7
0 1 0 1 0 0 o0 1o 0 0o 1 0 o0 o
00 0 0o 1 0 1 21 0 0 g 0 0 o
0 0o 0o 0o 0o 1 0] 3lao-e(y 0o 1 1

_1_0.,(1)4-0—'0""0" 0 411 0o 0 0 0 0 1
0 0 ¢ 0o 0 1 o0 s{o 1 0 0o 0o o0 1
0 0 1 0 0 0 o0 6|0 0 1 0 1 0 o0
0 0 1 1 1 0 0 70 1 0 0o 0o 0 o
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Incidence Matrices
e Assume G has V vertices and E edges

e Incidence matrix M(G) is VXE where
- Assuming edge e is (u, w), and v a vertex,
— If M is undirected: M[v,e]=
o 1if e=(v,x) or (x,v) (e is “incident on” v)

* 0 otherwise | Book Chap. 7.1,7.2

— If M is directed: M[v,e] =
e 1if v =u (edge e starts from v)
e -1 if v =w (edge e ends at w)
¢ 0 otherwise El E2 E3 E4 E5 E6 E

~
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http://btechsmartclass.com/DS/images/Graph%20Incidence%20Matrix.jpg
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Incidence Matrix Properties

Every column has exactly two 1s
Sum over a row = degree of that vertex
Row with all O’s is an isolated matrix

Parallel edges (same source and destination) have
identical columns

Permuting any two rows or columns simply “relabels”
vertices or edges

If graph has two disconnected subgraphs, it can be M1 0
reordered into block-diagonal form 0 M2

Two graphs are isomorphic if their incidence matrices
differ only by row/col permutation

If G is connected, Incidence matrix has rank N-1

An (n-1)x(N-1) submatrix of M(G) is non-singular iff the
N-1 columns of subgraph form a spanning tree

Graphs & Linear Algebra
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Circuit Matrix

e Circuit Matrix B(G) = QxE; | Book Chap. 7.3-7.5

- Q = # circuits (closed walk where each vertex
appears once)

- B[c,e] = 1 if circuit c includes edge e

€4 €4 € € &y €4 ey &
o o o tfr 11000
" C=2/0 0 1 1 1 O
& Il 100110

Circuit | : {ey, 2, €3)

° o Circuit 2: {es, 04, €3}
e Circuit 3 : {e), 3, €3, €]
(a) Graph G4 (b) Circuit matrix of Gy

https://image.slidesharecdn.com/graphrepresentation-120903115144-phpapp01/95/graph-representation-16-728.jpg?ch=1346673176
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Circuit Matrix Properties

Each row defines a circuit
Number of 1s in a row is length of circuit

Permuting any two rows or columns simply
“relabels” circuits or edges

Column of all Os corresponds to an edge that’s
not part of a circuit

A row can have one 1 - for a self-loop

If G has two disconnected subgraphs, it can be |B1 0

reordered into block-diagonal form 0

If B is circuit matrix of incidence matrix A, then
ABT = B'TA = 0 (mod 2)

If G connected then C(G) has rank E-N+1

Graphs & Linear Algebra
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Cut-Set Matrix

e Cut-Set Matrix C(G) = SxE; |BookChap. 76

- S = # cut-sets (where a cut-set is a set of edges
whose removal breaks graph in two)

- S[s,e] = 1 if cut-set s includes edge e; else o

3 -
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Cut set 1:-[1,2 F
1 ut set 1:-[1,2] TN [

https://enknowledges.blogspot.com/2014/10/what-is-cut-set-matrix-in-btech.html
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Cut-Set Matrix Properties

Each row defines a cut-set of edges

Permuting any two rows or columns
simply “relabels” cut-sets or edges

Column of all Os corresponds to an edge
that’s not part of a circuit

Parallel edges (same source and
destination) have identical columns

Rank of C(G) = rank of A(G)

If C is cut-set matrix of circuit matrix B,
then CBT = B'C = 0 (mod 2)
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Path Matrix
|Book Chap. 7.8 |

Path Matrix by convention: P(G) is NxN
- P(u,v) = 1 if a path from u to v; 0 otherwise

Path Matrix from book: P(G),,, = HXE;
- Separate matrix for each pair of vertices

- H = # of paths in G between vertices u and v

- P[p,e] = 1 if path p includes edge e, and 0 otherwise
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Laplacian Matrix of a Graph

e Laplacian L of simple graph Gis D - A
G simple: undirected, no self loops,
D = degree matrix D[i,i] = degree of vertex i
A = Adjacency matrix
L[i,j] (@ symmetric matrix)
o = degree(V[i]) if i=j
e = -1ifil=jandiadjacent to j

Labeled graph Degree matrix Adjacency matrix Laplacian matrix
200000 010010 2 -1 0 0 -1 0
e 030000 101010 -1 3 -1 0 -1 0
o e o 00 2000 010100 0 -1 2 -1 0 0
.. 000300 001011 0 0 -1 3 -1 -1
e o 0000360 110100 -1 -1 0 -1 3 0
0 00O0O0OU0DI1 000100 0 0 0 -1 o0 1

https://en.wikipedia.org/wiki/Laplacian_matrix
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Changing the
Matrix Operations
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Matrix Vector Product

e Conventional y=Mx, M is NxN, |x]|,|y|=N

- ylil = 24, WMI,3T*x[5]
— = M[i,17*x[1] + M[i,2]*x[2] + ... M[i,N]*x[N]

e Consider y = ATx,
- A adjacency matrix
- X a bit vector of vertices
yLi] = # of edges into vertex i from any vertex in x
if y[i]>0, then vertex i reachable from any vertex in X

AT 1 2 3 4 5 6 7 _x

14-—1—-9—0-—0—4-—0—-0—0—0——» Yy AT 1 2 3 4 5 6 7 X
o 2|1 0 o o 0 o ofo & 1 }j0j0/ 0 1,0 0 0}0
leplo o010 1110 s e oo aTo a1l
o 2o iT¥=ema_o 17 TN Te 0 0 0 0 0 1fy
0 6|0 0 1 0 1 0 o 05\0\}1)00001'0\
0o 7|0 1 0o 0o 0 0o ofo g?{fﬁgéggi’
There are é‘edges\ nto vertex 3
if we start at 4 or 6, and 1 édge to vertex 1
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Changing the Operators
e Conventional y=Mx, M is NxN, |x]|,|y|=N
- ylil = 2oy, WMIL0LIT*X[]
- = M[i,11*x[1] + M[i,2]1*x[2] + ... M[i,N]*X[N]
e But what if "*” is "TAND"”, and “+” is "OR”
- Then y[i]=1 if any AND(M[i,j], x[j]) is 1
- Or y[i]=1 if there is some j M[i,j]1=x[j])=1
e Consider y = ATx where *=AND, +=0R
- X a bit vector of vertices
- vy is now bit vector of vertices reachable from x
e But this (almost) one step of BFS!
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3 6
T T
G = (V,E) A x Ax
Figure 1.1. Matrix graph duality.

Adjacency matrix A is dual with the corresponding graph. In addition,
vector matrix multiply is dual with breadth-first search.
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Changing the Operators: Semirings

W /7

Rules of linear algebra hold whenever and “+" are

functions that form a semi-ring:

+ is commutative:a+ b =b + a
Both are associative:

-a+(b+c)=(a+b)+c |Letscall
-ar(®drag=@"b)*c |4 the reduction operator

* distributes over +: * -
(@ + b)*c = a*c + bre the combination operator

- a*(b + c) = a*b + a*c

Both are moniods, i.e. both have identities:
- a+ 0 = a ("0” is additive identity)

- a*1l = a (“1” is multiplicative identity)
Additive identity is multiplicative annihilator
- 0*a=a*0=0

Neither + nor * need have inverses

Graphs & Linear Algebra
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AT X ATx (AT)Yx
e Domain: booleans
e + = OR
e * = AND
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Minimum Paths

e Assume G has weighted edges (positive only)
e A is adjacency matrix but with oo for no edge

e C.[u,v] = min distance from u to v in exactly
k steps
- Cifu,v] = A

e Now assume mat mult ¢ + = min, * = +
* (A°A)Lu,v] = min,_; y(Alu,W]+A[W,V]) = A®?
\ |

min distance frdm utovthruw
® ThUS C2 = AOZ; C3 = A<>3;

* Min;_g »C; [u,v] = min distance from u to v
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Useful Semi Rings

+: Reduction Operation | +: Reduction Operation Sample
Function | Domain Identity | Function | Domain Identity Usage
Normal Ints, 0 Normal Ints, 1 Linear Algebra
Add floats Multiply floats
OR Boolean 0 AND Boolean BFS
min Ints, o] Normal Ints, Minimum
floats Add floats paths
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