Overview: Graphs
 \& Linear Algebra

Peter M. Kogge
Material based heavily on the Class Book
"Graph Theory with Applications..." by Deo
and
"Graphs in the Language of Linear Algebra:
Applications, Software, and Challenges"
Ed. by Jeremy Kepner and John Gilbert ${ }^{1}$

Conventional Matrix Operations

Good Tutorial:

https://stattrek.com/matrix-algebra/matrix.aspx

Basic Matrix Operations

- Pointwise operations: A, B both $N x M$
- If $C=A+B$, then $C[i, j]=A[i, j]+B[i, j]$
- Where + is "natural" scalar addition, And + is matrix addition
- Written C = A .+ B
- Same for $C=A * B$ where $C[i, j]=A[i, j] * B[i, j]$ - Written C = A.* B
- Scalar-Matrix operations: s a scalar, A NxM
- If $C=s+A, C[i, j]=s+A[i, j]$
- Similar for $C=s * A($ sometimes written $s A)$ or $A * s$
- Vector Scaling: v N elt vector, A NxM
- If $C=v . * A$, then $C[i, j]=v[i] * A[i, j]$

More Basic Matrix Operations

- Matrix Multiplication: A is $N x M, B$ is $M x R$
- If $C=A x B$ (also written just AB)
$-C[i, k]=A[i, 1] * B[1, k]+A[i, 2] * B[2, k]+\ldots$ $A[i, N] * B[N, k]$
- Written C = A+.*B
- Either A or B, or both, could be vectors Nx1, Mx1
- Matrix Exponentiation: A NxN
- If $C=A^{k}$, then $C=A(A(A \ldots(A A) \ldots) k$ times
- Matrix Transpose: A is NxM
- If $C=A^{\top}$, then C is $M x N, C[i, j]=A[j, i]$

More Basic Matrix Operations

- Inner Product: x, y of length N
- If $C=x+{ }^{*} y$, then $C=\sum_{i=1, \mathrm{~N}} x[i]^{*} y[i]$
- Also written $x \bullet y$
- Outer Product: x of length N, y length M
- If $C=x \circ y$, then $C[i, j]=x[i] * y[j]$, an NxM matrix
- Diagonalization: van elt vector
- If C - diag(v), then $C[i, i]=v[i] ; C[i, j]=0, i!=j$

Matrix Operation Properties

- If A, B, matrices of same dimensions
$-A+B=B+A$ (elt-by-elt addition is commutative)
$-A+(B+C)=(A+B)+C$ (also associative)
- Likewise for elt by elt multiplication
- If A is $N \times M, B$ is $M \times R, C$ is $R \times Q$:
$-A(B C)=(A B) C$ (associative)
- If A is $N x N, I$ an $N x N$ identity matrix
- $A I=I A=A$ (I is a multiplicative identity)
$-A^{-1} A=A A^{-1}=I$ if A^{-1} exists

Kronecker Product

- Assume A is $M x N, B$ is $P x Q$
- $C=A \otimes B$ is $\left(M^{*} P\right) x\left(N^{*} Q\right)$
- Replace each $A[s, t]$ by $A[s, t] B$ (replace scalar by matrix)
$-C[i, j]=A[s, t] * B[u, v], i=(s-1) P+u ; j=(t-1) Q+v$
- $A^{\otimes}{ }^{2}=A \otimes A \otimes A \ldots . A$
$\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{ccc}a_{11} \mathbf{B} & \cdots & a_{1 n} \mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m 1} \mathbf{B} & \cdots & a_{m n} \mathbf{B}\end{array}\right]$,

Linear Algebra Operations

- Solve for x in $\mathrm{Ax}=\mathrm{b}$
- Gaussian Elimination
- LU matrix decomposition
- Inverse A^{-1} of A where $A A^{-1}=A^{-1} A=I$
- Determinant of $A,|A|$
- Cramer's rule for 2×2 : $A[1,1] A[2,2]-A[1,2] A[2,1]$
- Recursively apply for bigger matrices
- Eigenvectors and values: $A x=\lambda x$

Row Echelon Form

- Matrix A is in row echelon form if For row i,
$-A[i, 1]=A[i, 2]=\ldots A[i, i-1]=0$
$-A[i, i]=1$
- Rows with all 0's at bottom
- Reduced row echelon if $A[i, i]$ only non-zero
- Any matrix can be converted to row echelon:
- For $\mathrm{i}=1$ to N
- Find first row $j(j \geq i)$ with $A[j, i]!=0$
- Swap rows i and j
- Divide each element of new row i by $A[i, i]$
- For $k>i$, multiply row i by $A[k, i]$ and subtract from row k
- Basis for Gauss Seidel method to solve $A x=b$

Subspaces and Rank

- A set of vectors is linearly independent if no one is a weighted sum of the others
- Rank of a matrix = \# of independent rows (or columns)
- Compute by forming row echelon \& count non-zero rows
- Full rank: when all rows independent
- NxN matrix invertible iff rank $=\mathrm{N}$

I nfinite Matrix Sums

- Common problem: compute $\mathrm{D}=\Sigma_{\mathrm{k}=0, \infty} \mathrm{~A}^{k}$
$-D=I+A+A^{2}+A^{3}+\ldots$.
- Instead look at $D-D A=$
$-I+A+A^{2}+A^{3}+\ldots .-A-A^{2}-A^{3}-\ldots .=I$
- Thus $I=D-D A=D(I-A)$
- Or D = (I - A $)^{-1}$
- Often nasty to compute accurately
- Does not converge
- Alternative if all we care about is whether $D[i, j]$ is 0 or not
- To compute $\mathrm{D}=\mathrm{I}+\mathrm{aA}+(\mathrm{aA})^{2}+(a \mathrm{~A})^{3}+\ldots$.
- Compute $D=(I-a A)^{-1}$

Graphs as Matrices

Adjacency Matrix

Book Chap. 7.9
$A[u, v]=1$ is edge from vertex u to vertex 4

Simple Adjacency Properties

Out-degree(u) = sum across row u In-degree(v) = sum down column \mathbf{v}

Adjacency Observations

- Undirected graph: $A[u, v]=A[v, u]$
- Matrix is symmetric
- Weighted graph: $A[u, v]=$ weight on (u,v)
- Transpose: $A^{\top}[v, u]=A[u, v]$
- ! = 0 if edge from u to v

Incidence Matrices

- Assume G has V vertices and E edges
- Incidence matrix $M(G)$ is VxE where
- Assuming edge e is (u, w), and v a vertex,
- If M is undirected: $M[v, e]=$
- 1 if $e=(v, x)$ or (x, v) (e is "incident on" v)
- 0 otherwise
- If M is directed: $\mathrm{M}[\mathrm{v}, \mathrm{e}]=$

Book Chap. 7.1,7.2

- 1 if $v=u$ (edge e starts from v)
- -1 if $v=w$ (edge e ends at w)

I ncidence Matrix Properties

- Every column has exactly two 1 s
- Sum over a row = degree of that vertex
- Row with all 0's is an isolated matrix
- Parallel edges (same source and destination) have identical columns
- Permuting any two rows or columns simply "relabels" vertices or edges
- If graph has two disconnected subgraphs, it can be reordered into block-diagonal form

M1 0
0 M2

- Two graphs are isomorphic if their incidence matrices differ only by row/col permutation
- If G is connected, Incidence matrix has rank $\mathrm{N}-1$
- An ($n-1) \times(N-1)$ submatrix of $M(G)$ is non-singular iff the $\mathrm{N}-1$ columns of subgraph form a spanning tree

Circuit Matrix

- Circuit Matrix $B(G)=Q x E ;$

Book Chap. 7.3-7.5

- $\mathrm{Q}=$ \# circuits (closed walk where each vertex appears once)
$-B[c, e]=1$ if circuit c includes edge e

(a) Graph G_{14}
$C=2\left(\begin{array}{cccccc}e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0\end{array}\right)$
Circuit 1: $\left\{e_{1}, e_{2}, e_{3}\right\}$
Circuit 2: $\left\{e_{3}, c_{4}, e_{5}\right\}$
Circuit 3: $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$
(b) Circuit matrix of G_{14}
https://image.slidesharecdn.com/graphrepresentation-120903115144-phpapp01/95/graph-representation-16-728.jpg?cb=1346673176

Circuit Matrix Properties

- Each row defines a circuit
- Number of 1 s in a row is length of circuit
- Permuting any two rows or columns simply "relabels" circuits or edges
- Column of all Os corresponds to an edge that's not part of a circuit
- A row can have one 1 - for a self-loop
- If G has two disconnected subgraphs, it can be B1 0 reordered into block-diagonal form
- If B is circuit matrix of incidence matrix A, then $A B^{\top}=B^{\top} A=0(\bmod 2)$
- If G connected then $C(G)$ has rank $E-N+1$

Cut-Set Matrix

- Cut-Set Matrix C(G) = SxE;

Book Chap. 7.6

- $\mathrm{S}=$ \# cut-sets (where a cut-set is a set of edges whose removal breaks graph in two)
- $\mathrm{S}[\mathrm{s}, \mathrm{e}]=1$ if cut-set s includes edge e; else o

(D)
https://enknowledges.blogspot.com/2014/10/what-is-cut-set-matrix-in-btech.html

Cut-Set Matrix Properties

- Each row defines a cut-set of edges
- Permuting any two rows or columns simply "relabels" cut-sets or edges
- Column of all Os corresponds to an edge that's not part of a circuit
- Parallel edges (same source and destination) have identical columns
- Rank of $C(G)=$ rank of $A(G)$
- If C is cut-set matrix of circuit matrix B, then $\mathrm{CB}^{\top}=\mathrm{B}^{\top} \mathrm{C}=0(\bmod 2)$

Path Matrix

Book Chap. 7.8

- Path Matrix by convention: $\mathrm{P}(\mathrm{G})$ is NxN
$-P(u, v)=1$ if a path from u to $v ; 0$ otherwise
- Path Matrix from book: $P(G)_{(u, v)}=H x E ;$
- Separate matrix for each pair of vertices
- H = \# of paths in G between vertices u and v
- $P[p, e]=1$ if path p includes edge e, and 0 otherwise

Laplacian Matrix of a Graph

- Laplacian L of simple graph G is D - A
- G simple: undirected, no self loops,
- $D=$ degree matrix $D[i, i]=$ degree of vertex i
- A = Adjacency matrix
- L[i,j] (a symmetric matrix)
- = degree $(v[i])$ if $i=j$
- = - 1 if i != j and i adjacent to j

Labeled graph	Degree matrix	Adjacency matrix	Laplacian matrix
	$\left(\begin{array}{llllll}2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$	$\left(\begin{array}{rrrrrr}2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1\end{array}\right)$

Changing the Matrix Operations

Matrix Vector Product

- Conventional $y=M x, M$ is $N x N,|x|,|y|=N$
$-y[i]=\Sigma_{j=1, \ldots \mathrm{~N}} M[\mathrm{i}, \mathrm{j}] * x[j]$
$-=M[i, 1] * x[1]+M[i, 2] * x[2]+\ldots M[i, N] * x[N]$
- Consider $y=A^{\top} x$,
- A adjacency matrix
- x a bit vector of vertices
- $y[i]=\#$ of edges into vertex i from any vertex in x
- if $y[i]>0$, then vertex i reachable from any vertex in x

There are 2 edges into vertex 3 if we start at 4 or 6, and 1 êdge to vertex 1 Graphs \& Linear Algebra

Changing the Operators

- Conventional $y=M x, M$ is $N x N,|x|,|y|=N$
$-y[i]=\Sigma_{j=1, \ldots N^{M}}[i, j] * x[j]$
$-=M[i, 1]^{*} x[1]+M[i, 2]^{*} x[2]+\ldots M[i, N]^{*} x[N]$
- But what if "*" is "AND", and " + " is "OR"
- Then $y[i]=1$ if any $\operatorname{AND}(M[i, j], x[j])$ is 1
- Or $y[i]=1$ if there is some $\mathrm{j} M[\mathrm{i}, \mathrm{j}]=x[j])=1$
- Consider y $=A^{\top} x$ where $*=A N D,+=O R$
- x a bit vector of vertices
- y is now bit vector of vertices reachable from x
- But this (almost) one step of BFS!

Figure 1.1. Matrix graph duality.
Adjacency matrix \mathbf{A} is dual with the corresponding graph. In addition, vector matrix multiply is dual with breadth-first search.

Changing the Operators: Semirings

Rules of linear algebra hold whenever "*" and "+" are functions that form a semi-ring:

- + is commutative: $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$
- Both are associative:
$-a+(b+c)=(a+b)+c$
$-a *(b * c)=(a * b) * c$

Lets call:

* distributes over +:
$-(a+b)^{*} c=a^{*} c+b^{*} c$
+ the reduction operator
$-a^{*}(b+c)=a * b+a * c$
- Both are moniods, i.e. both have identities:
$-a+0=a$ ("0" is additive identity)
- $a * 1=a$ (" $1 "$ is multiplicative identity)
- Additive identity is multiplicative annihilator
- $0 * a=a * 0=0$
- Neither + nor * need have inverses

- Domain: booleans
- + = OR
- * $=$ AND

Minimum Paths

- Assume G has weighted edges (positive only)
- A is adjacency matrix but with ∞ for no edge
- $C_{k}[u, v]=$ min distance from u to v in exactly k steps
$-\mathrm{C}_{1}[\mathrm{u}, \mathrm{v}]=\mathrm{A}$
- Now assume mat mult $\diamond+=\min , *=+$
- $\left(A^{\diamond} A\right)[u, v]=\min _{w=1, N}(A[u, w]+A[w, v])=A^{\diamond 2}$
min distance from u to v thru w
- Thus $C_{2}=A \diamond 2 ; C_{3}=A \diamond 3 ; .$.
- $\min _{i=0, \infty} C_{i}[u, v]=$ min distance from u to v

Useful Semi Rings

| +: Reduction Operation | +: Reduction Operation | | | Sample
 Usage | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Function | Domain | Identity | Function | | Identity | |
| Normal
 Add | Ints,
 floats | 0 | Normal
 Multiply | Ints,
 floats | 1 | Linear Algebra |
| OR | Boolean | 0 | AND | Boolean | 0 | BFS |
| \min | Ints,
 floats | ∞ | Normal
 Add | Ints,
 floats | 0 | Minimum
 paths |
| | | | | | | |
| | | | | | | |

