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1Graphs & Linear Algebra

Overview: Graphs 
& Linear Algebra

Peter M. Kogge
Material based heavily on the Class Book

“Graph Theory with Applications…” by Deo
and 

“Graphs in the Language of Linear Algebra: 
Applications, Software, and Challenges”
Ed. by Jeremy Kepner and John Gilbert1

Please Sir, I want more

1https://www.researchgate.net/profile/Aydin_Buluc/publication/235784365_New_Ideas_in_Sparse_Matrix-Matrix_Multiplication/links/00b495320c1897cddc000000/New-Ideas-in-Sparse-Matrix-Matrix-Multiplication.pdf

2Graphs & Linear Algebra

Conventional 
Matrix Operations

Good Tutorial:
https://stattrek.com/matrix-algebra/matrix.aspx



2

3Graphs & Linear Algebra

Basic Matrix Operations
• Pointwise operations: A, B both NxM

– If C = A + B, then C[i,j] = A[i,j] + B[i,j]
• Where + is “natural” scalar addition, And + is matrix addition
• Written C = A .+ B

– Same for C = A*B where C[i,j] = A[i,j] * B[i,j]
• Written C = A .* B

• Scalar-Matrix operations: s a scalar, A NxM
– If C = s + A, C[i,j] = s + A[i,j]
– Similar for C = s*A (sometimes written sA) or A*s

• Vector Scaling: v N elt vector, A NxM
– If C = v.*A, then C[i,j] = v[i]*A[i,j]
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More Basic Matrix Operations
• Matrix Multiplication: A is NxM, B is MxR

– If C = AxB (also written just AB)
– C[i, k] = A[i,1]*B[1,k] + A[i,2]*B[2,k] + … 

A[i,N]*B[N,k]
– Written C = A+.*B
– Either A or B, or both, could be vectors Nx1, Mx1

• Matrix Exponentiation: A NxN
– If C = Ak, then C = A(A(A…(AA)…) k times

• Matrix Transpose: A is NxM
– If C = AT, then C is MxN, C[i,j] = A[j,i]
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More Basic Matrix Operations
• Inner Product: x,y of length N

– If C = x +.* y, then C = Σi=1,N x[i]*y[i]
– Also written x●y

• Outer Product: x of length N, y length M
– If C = x ◦ y, then C[i,j] = x[i]*y[j], an NxM matrix

• Diagonalization: v a N elt vector
– If C – diag(v), then C[i,i] = v[i]; C[i,j] = 0, i!=j
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Matrix Operation Properties
• If A, B, matrices of same dimensions

– A + B = B + A (elt-by-elt addition is commutative)
– A + (B + C) = (A + B) + C (also associative)
– Likewise for elt by elt multiplication

• If A is NxM, B is MxR, C is RxQ:
– A(BC) = (AB)C (associative)

• If A is NxN, I an NxN identity matrix
– AI = IA = A (I is a multiplicative identity)
– A-1A = AA-1 = I if A-1 exists
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Kronecker Product
• Assume A is MxN, B is PxQ
• C = A   B is (M*P)x(N*Q)

– Replace each A[s,t] by A[s,t]B (replace scalar by matrix)
– C[i,j] = A[s,t]*B[u,v], i = (s-1)P + u; j = (t-1)Q + v
– A   k = A   A A …. A
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Linear Algebra Operations
• Solve for x in Ax = b

– Gaussian Elimination
– LU matrix decomposition

• Inverse A-1 of A where AA-1 = A-1A = I
• Determinant of A, |A|

– Cramer’s rule for 2x2: A[1,1]A[2,2]-A[1,2]A[2,1]
– Recursively apply for bigger matrices

• Eigenvectors and values: Ax = λx
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Row Echelon Form
• Matrix A is in row echelon form if For row i, 

– A[i,1] = A[i,2] = … A[i,i-1] = 0
– A[i,i] = 1
– Rows with all 0’s at bottom

• Reduced row echelon if A[i,i] only non-zero
• Any matrix can be converted to row echelon:

– For i=1 to N
• Find first row j (j ≥ i) with A[j,i] != 0
• Swap rows i and j
• Divide each element of new row i by A[i,i]
• For k>i, multiply row i by A[k,i] and subtract from row k

• Basis for Gauss Seidel method to solve Ax=b
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Subspaces and Rank
• A set of vectors is linearly independent if 

no one is a weighted sum of the others
• Rank of a matrix = # of independent rows 

(or columns)
– Compute by forming row echelon & count non-zero rows

• Full rank: when all rows independent
• NxN matrix invertible iff rank = N
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Infinite Matrix Sums
• Common problem: compute D = ∑k=0,∞Ak 

– D = I + A +A2 + A3 + ….

• Instead look at D – DA =
– I + A +A2 + A3 + ….   - A -A2 - A3 - …. = I

• Thus I = D – DA = D(I - A)
• Or D = (I – A)-1 

• Often nasty to compute accurately
– Does not converge

• Alternative if all we care about is whether 
D[i,j] is 0 or not
– To compute D = I + αA +(αA)2 + (αA)3 + ….
– Compute D = (I – αA)-1

12Graphs & Linear Algebra

Graphs as Matrices
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Adjacency Matrix

A 1 2 3 4 5 6 7

1 0 1 0 1 0 0 0

2 0 0 0 0 1 0 1

3 0 0 0 0 0 1 0

4 1 0 1 0 0 0 0

5 0 0 0 0 0 1 0

6 0 0 1 0 0 0 0

7 0 0 1 1 1 0 0

A[u, v] = 1 is edge from vertex u to vertex 4

Book Chap. 7.9
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Simple Adjacency Properties

Out-degree(u) = sum across row u
In-degree(v) = sum down column v

A 1 2 3 4 5 6 7 o
u
t‐
d
eg

in
‐d
eg

d
eg

1 0 1 0 1 0 0 0 2 1 3

2 0 0 0 0 1 0 1 2 1 3

3 0 0 0 0 0 1 0 1 3 4

4 1 0 1 0 0 0 0 2 2 4

5 0 0 0 0 0 1 0 1 2 3

6 0 0 1 0 0 0 0 1 2 3

7 0 0 1 1 1 0 0 3 1 4
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Adjacency Observations
• Undirected graph: A[u, v] = A[v, u]

– Matrix is symmetric

• Weighted graph: A[u, v] = weight on (u,v)
• Transpose: AT[v,u] = A[u,v]

– != 0 if edge from u to v
A 1 2 3 4 5 6 7

1 0 1 0 1 0 0 0

2 0 0 0 0 1 0 1

3 0 0 0 0 0 1 0

4 1 0 1 0 0 0 0

5 0 0 0 0 0 1 0

6 0 0 1 0 0 0 0

7 0 0 1 1 1 0 0

AT 1 2 3 4 5 6 7

1 0 0 0 1 0 0 0

2 1 0 0 0 0 0 0

3 0 0 0 1 0 1 1

4 1 0 0 0 0 0 1

5 0 1 0 0 0 0 1

6 0 0 1 0 1 0 0

7 0 1 0 0 0 0 0
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Incidence Matrices
• Assume G has V vertices and E edges 
• Incidence matrix M(G) is VxE where 

– Assuming edge e is (u, w), and v a vertex, 
– If M is undirected: M[v,e]=

• 1 if e=(v,x) or (x,v) (e is “incident on” v)
• 0 otherwise

– If M is directed: M[v,e] =
• 1 if v = u (edge e starts from v)
• -1 if v = w (edge e ends at w)
• 0 otherwise

http://btechsmartclass.com/DS/images/Graph%20Incidence%20Matrix.jpg

Book Chap. 7.1,7.2
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Incidence Matrix Properties
• Every column has exactly two 1s
• Sum over a row = degree of that vertex
• Row with all 0’s is an isolated matrix
• Parallel edges (same source and destination) have 

identical columns
• Permuting any two rows or columns simply “relabels” 

vertices or edges
• If graph has two disconnected subgraphs, it can be 

reordered into block-diagonal form
• Two graphs are isomorphic if their incidence matrices 

differ only by row/col permutation
• If G is connected, Incidence matrix has rank N-1
• An (n-1)x(N-1) submatrix of M(G) is non-singular iff the 

N-1 columns of subgraph form a spanning tree

M1  0
0    M2
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Circuit Matrix
• Circuit Matrix B(G) = QxE; 

– Q = # circuits (closed walk where each vertex 
appears once)

– B[c,e] = 1 if circuit c includes edge e

Book Chap. 7.3-7.5

https://image.slidesharecdn.com/graphrepresentation-120903115144-phpapp01/95/graph-representation-16-728.jpg?cb=1346673176
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Circuit Matrix Properties
• Each row defines a circuit
• Number of 1s in a row is length of circuit
• Permuting any two rows or columns simply 

“relabels” circuits or edges
• Column of all 0s corresponds to an edge that’s 

not part of a circuit
• A row can have one 1 – for a self-loop
• If G has two disconnected subgraphs, it can be 

reordered into block-diagonal form
• If B is circuit matrix of incidence matrix A, then 

ABT = BTA = 0 (mod 2)
• If G connected then C(G) has rank E-N+1

B1  0
0    B2
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Cut-Set Matrix
• Cut-Set Matrix C(G) = SxE; 

– S = # cut-sets (where a cut-set is a set of edges 
whose removal breaks graph in two)

– S[s,e] = 1 if cut-set s includes edge e; else o

Book Chap. 7.6

https://enknowledges.blogspot.com/2014/10/what-is-cut-set-matrix-in-btech.html
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Cut-Set Matrix Properties
• Each row defines a cut-set of edges
• Permuting any two rows or columns 

simply “relabels” cut-sets or edges
• Column of all 0s corresponds to an edge 

that’s not part of a circuit
• Parallel edges (same source and 

destination) have identical columns
• Rank of C(G) = rank of A(G)
• If C is cut-set matrix of circuit matrix B, 

then CBT = BTC = 0 (mod 2)

22Graphs & Linear Algebra

Path Matrix
• Path Matrix by convention: P(G) is NxN

– P(u,v) = 1 if a path from u to v; 0 otherwise

• Path Matrix from book: P(G)(u,v) = HxE; 
– Separate matrix for each pair of vertices
– H = # of paths in G between vertices u and v
– P[p,e] = 1 if path p includes edge e, and 0 otherwise

Book Chap. 7.8
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Laplacian Matrix of a Graph
• Laplacian L of simple graph G is D – A

– G simple: undirected, no self loops, 
– D = degree matrix D[i,i] = degree of vertex i
– A = Adjacency matrix
– L[i,j] (a symmetric matrix)

• = degree(v[i]) if i=j
• = -1 if i != j and i adjacent to j

https://en.wikipedia.org/wiki/Laplacian_matrix

24Graphs & Linear Algebra

Changing the 
Matrix Operations
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Matrix Vector Product
• Conventional y=Mx, M is NxN, |x|,|y|=N

– y[i] = Σj=1,…NM[i,j]*x[j]
– = M[i,1]*x[1] + M[i,2]*x[2] + … M[i,N]*x[N]

• Consider y = ATx, 
– A adjacency matrix
– x a bit vector of vertices
– y[i] = # of edges into vertex i from any vertex in x
– if y[i]>0, then vertex i reachable from any vertex in x

y AT 1 2 3 4 5 6 7 x

1 1 0 0 0 1 0 0 0 0

0 2 1 0 0 0 0 0 0 0

1 3 0 0 0 1 0 1 1 0

0 4 1 0 0 0 0 0 1 1

0 5 0 1 0 0 0 0 1 0

0 6 0 0 1 0 1 0 0 0

0 7 0 1 0 0 0 0 0 0

There are 2 edges into vertex 3
if we start at 4 or 6, and 1 edge to vertex 1

y AT 1 2 3 4 5 6 7 x

1 1 0 0 0 1 0 0 0 0

0 2 1 0 0 0 0 0 0 0

2 3 0 0 0 1 0 1 1 0

0 4 1 0 0 0 0 0 1 1

0 5 0 1 0 0 0 0 1 0

0 6 0 0 1 0 1 0 0 1

0 7 0 1 0 0 0 0 0 0
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Changing the Operators
• Conventional y=Mx, M is NxN, |x|,|y|=N

– y[i] = Σj=1,…NM[i,j]*x[j]
– = M[i,1]*x[1] + M[i,2]*x[2] + … M[i,N]*x[N]

• But what if “*” is “AND”, and “+” is “OR”
– Then y[i]=1 if any AND(M[i,j], x[j]) is 1
– Or y[i]=1 if there is some j M[i,j]=x[j])=1

• Consider y = ATx where *=AND, +=OR
– x a bit vector of vertices
– y is now bit vector of vertices reachable from x

• But this (almost) one step of BFS!
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28Graphs & Linear Algebra

Changing the Operators: Semirings
Rules of linear algebra hold whenever “*” and “+” are 

functions that form a semi-ring:
• + is commutative: a + b = b + a
• Both are associative: 

– a + (b + c) = (a + b) + c
– a * (b * c) = (a * b) * c

• * distributes over +:
– (a + b)*c = a*c + b*c
– a*(b + c) = a*b + a*c

• Both are moniods, i.e. both have identities:
– a + 0 = a (“0” is additive identity)
– a*1 = a (“1” is multiplicative identity)

• Additive identity is multiplicative annihilator
– 0*a = a*0 = 0 

• Neither + nor * need have inverses

Lets call:
+ the reduction operator
* the combination operator
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BFS

• Domain: booleans
• + = OR
• * = AND

Fig. 4.1
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Minimum Paths
• Assume G has weighted edges (positive only)
• A is adjacency matrix but with ∞ for no edge
• Ck[u,v] = min distance from u to v in exactly

k steps
– C1[u,v] = A

• Now assume mat mult ◊ + = min, * = +
• (A◊A)[u,v] = minw=1,N(A[u,w]+A[w,v]) = A◊2

• Thus C2 = A◊2; C3 = A ◊ 3; …
• mini=0,∞Ci [u,v] = min distance from u to v

min distance from u to v thru w
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Useful Semi Rings
+: Reduction Operation +: Reduction Operation Sample 

UsageFunction Domain Identity Function Domain Identity

Normal 
Add

Ints, 
floats

0 Normal 
Multiply

Ints, 
floats

1 Linear Algebra

OR Boolean 0 AND Boolean 0 BFS

min Ints, 
floats

∞ Normal 
Add

Ints, 
floats

0 Minimum 
paths


