Triangles

Peter M. Kogge

Notation

- **k-Clique**: set of k vertices with $k(k-1)/2$ edges fully connecting them

- Triangle = 3-clique

- Triangle algorithms:
 - **Find** if any triangle exist in a graph
 - **List** all triangles in a graph
 - **Count** # of triangles in a graph, but not list
 - **Estimate** # of triangles in a graph
Uses

• Finding k-cliques
• Community detection
• Computing clustering coefficients
• Subgraph isomorphism
• Finding minimum circuits

Properties

• For graph G with n vertices, there may be $\Theta(n^3)$ or $\Theta(m^{3/2})$ triangles
• If vertex v has degree d, at most $d(d-1)/2$ distinct triangles include it
• Any vertex in a k-clique must be in k-1 triangles with other k-1 vertices
• Each minimum circuit of path length 3 corresponds to a triangle
The Importance of Wedges

- **Wedge:**

 ![Wedge Diagram](image)

 - If find all wedges, can check each for triangle
 - If v has degree d, there are $d(d-1)$ wedges
 - High degree vertices have *lots* of wedges
 - Common heuristic:
 - "label" all vertices in some order
 - When looking at wedges, check only those where label of u and v are "higher/lower" than w

Taxonomy of Triangles

- Undirected
- Trans.
- Out recip.
- In recip.

These contain cycles

A Trivial Triangle Finder

- For each vertex \(v \)
 - Do 3 levels of BFS
 - For each vertex \(u \) reached in 3rd level,
 - If \(u=v \) then at least one Triangle

Finding Triangles: Matrix Multiply

- Let \(A \) = adjacency matrix
 - \(A[v,u] = 1 \) if path from \(u \) to \(v \)

- Consider \(Y_2 = A^2 \):
 - \(Y_2[v,u] = \sum A[v,z]*A[z,u] \)
 - If \(Y_2[v,u] = 1 \) and \(A[v,u]! = 1 \) then there is some edge from \(u \) to some \(z \), and from \(z \) to \(v \)

- Consider \(Y_3 = A^3 \):
 - \(Y_3[u,u] = \sum A[u,v]*A^2[v,u] \)
 - If \(Y_3[u,u] = 1 \) and \(A^2[v,u]! = 1 \) then there is some edge from \(u \) to some \(z \) (of length 2), and from \(z \) back to \(u \).
 - Total path length = 3 so \(\{u, v, z\} \) forms a triangle

- Time complexity \(O(n^{\omega}), \omega<2.376 \)
Finding Triangles: Rooted Trees

• Assume \(T = \) a rooted spanning tree in \(G \)
 – Every vertex in \(V \) is in tree

• Lemma: There is a triangle containing a tree edge iff there is a non-tree edge \((u,v)\) for which \((\text{father}(u), v)\) is in \(E \)

• Triangle-Finder: repeat until no edges in \(G \)
 – Find a rooted spanning tree for each connected component of \(G \)
 – If any tree edge is in a triangle (use above) stop
 – If not, delete all edges in tree from \(G \)

• \(O(M^{3/2}) \) time, \(M = \# \) edges

Listing Algorithm

Algorithm 1 – forward. Lists all the triangles in a graph [25, 26].

Input: an adjacency array representation of \(G \)

1. number the vertices with an injective function \(\eta() \)
 such that \(d(u) > d(v) \) implies \(\eta(u) < \eta(v) \) for all \(u \) and \(v \)
2. let \(A \) be an array of \(n \) arrays initially empty
3. for each vertex \(v \) taken in increasing order of \(\eta() \):
 3a. for each \(u \in N(v) \) with \(\eta(u) > \eta(v) \):
 3aa. for each \(w \) in \(A[u] \cap A[v] \): output triangle \(\{u, v, w\} \)
 3ab. add \(v \) to \(A[u] \)

• \(\Theta(m^{3/2}) \) time, \(\Theta'(3m+3n) \) space

• Latapy, “Practical algorithms for triangle computation in very large (sparse (power law)) graphs”

• Reduced space \(\Theta'(2m+2n) \) by comparing neighbors
Another Listing Algorithm

Algorithm 3 - new-listing. Lists all the triangles in a graph.
Input: a sorted adjacency array representation of G, and an integer K

1. for each vertex v in V:
 1a. if $d(v) > K$ then, using the method of Lemma 4:
 1a.a. output all triangles $\{v, u, w\}$ such that $d(u) > K$, $d(w) > K$ and $v > u > w$
 1a.b. output all triangles $\{v, u, w\}$ such that $d(u) > K$, $d(w) \leq K$ and $v > u$
 1a.c. output all triangles $\{v, u, w\}$ such that $d(u) \leq K$, $d(w) > K$ and $v > w$
 2. for each edge (v, u) in E:
 2a. if $d(v) \leq K$ and $d(u) \leq K$ then:
 2a.a. if $u < v$ then output all triangles containing (u, v) by computing $N(u) \cap N(v)$

- For power law graphs with exponent α, $\theta(mn^{1/\alpha})$ time
- Latapy, “Practical algorithms for triangle computation in very large (sparse (power law)) graphs”

Counting for Scale-Free Graphs

- **Degree Oriented Directed Graph (DOD):** ”Augment” graph with new “edges” from low to high degree
 - reduces # of high-degree vertices
 - Reduces # of wedge checks
- Algorithm:
 - Use 2-core to eliminate all vertices not possibly in a triangle
 - Create DOD
 - 1D partition onto nodes
 - Check wedges for each vertex (in parallel)
- Pearse, “Triangle Counting for Scale-Free Graphs at Scale in Distributed Memory”, 2017
Parallel Counting

- Partition V into p partitions V_1, V_2, \ldots, V_p
- Create subgraphs $V_{i,j,k} = V_i \cup V_j \cup V_k$ for $i \neq j \neq k$
 - With matching edge subsets: E_{ijk}
- Each triangle must be in at least 1 subgraph
- Load subgraphs on separate nodes
 - Compute # of local triangles
 - Correct for duplicates
- Suri and Vassilvitskii, “Counting Triangles and the Curse of the Last Reducer”