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1.1 Introduction

Network robustness is a network’s ability to withstand failures and perturbations. Human built
systems, such as airplanes and power plants, often require maintenance with minor errors, i.e.
failure of a single component. However, natural systems exhibit a remarkable ability to retain
its principal functions even when it experiences failures in multiple components. For instance, in
protein-protein-interaction (PPI) networks [3], malformed proteins as a result of bad mutations are
common but do not always contribute to diseases. Similarly, in metabolic networks, some chemical
reactions do not progress but their consequences are rarely seen [3]. Hence, it is imperative to
understand network robustness and its uses.

Researchers have used network robustness in a variety of fields to further understand systems.
In biology, for instance, network robustness is fundamental in helping us understand why some
mutations lead to diseases while others go unnoticed. In ecology, it helps us determine how the
effect of human actions propagate through the environment [29]. In sociology, we can use network
robustness to determine influence spreaders and decision makers [13]. In engineering, network
robustness can help us determine the weaknesses in our infrastructure, such as the Internet and
power grids [10]. As a whole, network robustness plays a key role in the analysis of many systems
and the resiliency they must exhibit in handling perturbations.

Network robustness extends from percolation theory. Percolation theory discusses the effect on
a network where a fraction of nodes or edges are removed. Removal of a few nodes or edges might
have a limited effect on the network. However, the removal of several nodes will probably have
a more profound effect [3]. Such models are often used to analyze real-world phenomena. The
failure of a router or the closure of an airport can be represented as the removal of a node and its
edges from its network representation. However, the question then arises: what percentage of the
nodes must be removed for the network to lose its functionality? In the Internet example, what
percentage of the routers must be nonfunctional for there to not exist any communication between
two routers on the Internet? Similarly, how many airport closures will disconnect air travel between
two countries? The underlying research question is in: how does the disruption of these system
affect its overall functionality? To answer these questions, we must first familiarize ourselves with
the specifics of network robustness.
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In this chapter, we specifically focus on the robustness of power grid networks. Such networks
are comprised of generators and power plants as nodes in the network and edges capture power
lines between them. These networks are vital to the economy and safety of the people who rely on
them. A failure, such as a severed power line or an electrical fire, can have catastrophic effects on
the network. For instance, a blackout involving eleven stated in 1996 was a result of an accidental
snapped power line in Oregon. As a result, we will explore the robustness and the resiliency of such
complex systems.

1.2 The Problem as a Graph

Power grid networks can have numerous different actors, ranging from generators to power plants.
Each of these actors has a different role in the network, and communicate with other different
actors. Some of the interaction might be directed, while others might be undirected. However, we
will explicitly explore undirected edges, where power flow goes both ways. The power grid network
is defined as a graph G = (V,E), where |V | is the number of vertices, or nodes, and |E| is the
number of edges in our graph. The nodes and edges in our graph can be weighted, i.e. with the
probability of failure. Nonetheless, we in this chapter we will explore a connected, undirected, and
unweighted graph.

A näıve approach to disconnect power in the network is to randomly remove nodes or edges,
to model natural disaster similar to the one in Oregon. However, an attack strategy relying on
random removal of nodes will probably require the removal of a large number of nodes, significantly
decreasing the potency of the attack. Hence the power grid, is considered resilient to random attacks
[9]. A different approach is to remove nodes or edges based on a metric, known as targeted attacks.
The removal of a few selected nodes or edges has been shown to deteriorate the network functionality
significantly quicker than random removals [25]. In essence, can we determine valuable nodes to
remove from our graph, G, to significantly decrease the connectedness of the network?

There are numerous different graph metrics used to determine valuable nodes. Degree centrality,
for instance, ranks the nodes based on the number of connections or links. Specifically, degree
centrality states that the greater the number of connections, the more important the node. Whereas
a different measure, such as the closeness centrality, ranks nodes based on how close they are to the
rest of the nodes in the network. Yet another measure, such as the eigenvector centrality, measures
how central a node is based on how central its neighbors are [24]. These different metrics can
be used to rank nodes and generally results in different rankings based on the metric used. This
paper looks closely at the betweenness centrality, a measure which ranks the nodes based on the
number of shortest paths between every other nodes which include the node of interest, a formal
introduction is presented later. Betweenness has been proven to be a very descriptive measure for
flow based networks, like the power grid, which models the flow of electricity [17].

Once these nodes are ranked and removed, the network robustness of the network must also be
quantified. One basic approach to quantify the robustness is to determine the size of the largest
connected component. In the power grid network, this would signify the number of generators or
power plants that have been disconnected from their source. If the largest connected component is
greatly reduced, then major areas experience blackouts as more and more nodes are isolated [14].
A more formal introduction to the largest connected component is presented in subsection 1.4.
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1.3 Some Realistic Data Sets

Infrastructure networks are considered to be highly sensitive and, as such, there is no openly
available data. Data used in this study will strictly be synthetic, but modeled to match power
grid data. One such model for power grids would be the Barabási-Albert model, also known as
the scale-free model, which are usually used to model the world-wide-web and human chemical
reactions. They are generally characterized by a few nodes with high degree and many nodes with
very low degree, as such the degree distribution follows a power law distribution [4]. Likewise,
a power grid network might have a few nodes of very high degree - a major power plant. There
would also be numerous low degree nodes represented by numerous local small town power plants
or generators.

Another model which can be used to study power grid network is the Watts-Strogatz small-
world network. This mdoel is generated from a well connected ring lattice, where a number of
edges are rewired. The network is characterized by a Poisson degree distribution, large clustering
coefficient and low average diameter [31]. Specifically, the length of the shortest chain, l connecting
two nodes grows logarithmically with the number of nodes, n, shown in equation 1.1 [5]. The
Watts-Strogatz model will be able to capture the relationship between utility poles in a very small
town where the diameter, l, grows proportionally with the number of utility poles, n.

l ∝ log(n) (1.1)

Hierarchical models can also used to model power grid networks. Hierarchical networks are
scale-free and follows a power law degree distribution, but it also exhibits high clustering [23].
This model will capture the distribution of power from a source to the peripheral, i.e. power is
distributed to the small towns after being generated at a major power plant.

1.4 Betweenness-A Key Graph Kernel

Multiple approaches have been taken to determine robustness of a network. Some common methods,
as previously stated, have included studying degree centrality [17], eigenvector centrality [15], k-
shell decomposition [12] and betweenness centrality. Cudra et. al presents a more comprehensive
lists of centrality measures used to determine network robustness [14].

1.4.1 Degree Centrality

One simple but often very apt centrality measure is the degree centrality. Degree centrality measures
the number of edges incident upon a node. The higher the degree of a node, the more central it is
to the network [17]. Hence, if the graph, G = (V,E), is given in a adjacency matrix A, then the
degree centrality of node i ∈ G is its degree di. Specifically, if n = |V |, then the degree centrality
can be calculated using equation 1.2 and 1.3.

Aij =

{
1, if i and j are connected by an edge
0, otherwise

(1.2)

di =
n∑
j=1

Aij (1.3)

Version 1.0 Page 3



Betweenness

Calculating the degree centrality is a fairly simple procedure and requires Θ(E) to traverse all
the edges of G.

1.4.2 Eigenvector Centrality

Another widely used measure is the eigenvector centrality which expands upon the degree central-
ity. While degree centrality measures the direct neighbors of a node, eigenvector centrality gives
importance to nodes whose neighbors are themselves important in the network. Specifically, the
eigenvector centrality Ce of a node i is defined to be proportional to the sum of the eigenvector
centrality of the neighbors of i and is calculated with equation 1.4, where ρ is a constant, M(i) are
the neighbors of node i, and n = |V |. With a few rearrangements (see reference for the derivation),
equation 1.4 can be transformed into the general eigenvector problem, shown in equation 1.5. It
should be noted that eigenvector centrality values are all non-negative for a connected graph.

Ce(i) =
1

ρ

∑
t∈M(i)

Ce(t) =
1

ρ

n∑
j=1

AijCe(j) (1.4)

ACe = λCe (1.5)

Eigenvector centrality will rank nodes high not only if they are connected to other highly
influential nodes, but also nodes which themselves have a high eigenvector ranking.

Eigenvector centrality will basically rank nodes as influential if they are connected to other
influential nodes. As such, it can be applied to determine important nodes in numerous real world
applications. For instance, in social networks, a Twitter user who is connected to a few highly
influential users, might be more important than an individual who has numerous insignificant
followers. A variation of eigenvector centrality is used by Google PageRank and is optimized to
handle over 25 billion webpages [2]. Nonetheless, the eigenvector centrality solves an involved
equation and the best running time achieved is Θ(V 3) [22].

1.4.3 k-shell Decomposition

Another metric to determine important nodes in a network is the k-shell decomposition. This
decomposition starts by removing all nodes of starting at degree 1. The new network is then
evaluated and, any node which ends up with a degree of 1 as a result of the removal, is also
removed. This procedure is followed until there is no more nodes with degree 1. All node removed
will receive a k-shell score of 1. This process is then repeated for all nodes with degree 2 to k, until
every node has received a k-shell score [12]. Higher k-shell score corresponds to a more central
position in the network.

k-shell decomposition has been used with great success in a variety of different applications.
Carmi et. al [12] shows that the k-shell decomposition produces insights into the underlying
structure of the Internet. Yaveroǧlu et. al [32] shows that the k-shell decomposition can correctly
identify the most influential nodes. Yaveroǧlu also shows that the highest k-shell scored nodes
do not necessarily have the highest degree, hence the degree centrality and k-shell decomposition
produces vastly different rankings.
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1.4.4 Betwenness Centrality

Betweenness centrality is common network metric used for various different applications. It has
been used to determine interdisciplinary nature of scientific journals [19], information flow be-
tween different firms in an alliance network [16], and even evolution of research in collaborative
networks [1]. More importantly, it has been used numerous times as the prime centrality metric
for determining robustness of power grid networks [11] and communication networks [27].

Betweenness centrality is a global centrality measure based on the shortest paths. This measure
considers the number of times a node lies “between” the shortest paths of other nodes in the network.
Specifically, it is defined as the sum of the portion of shortest paths that traverse through the node
of interest between the shortest paths of any two other nodes [1]. Formally, the betweenness of a
node i is defined in equation 1.6, where σst is the total number of shortest paths between nodes s
and t, and σst(i) is the number of those shortest paths that include node i.

CB(i) =
∑
s 6=t6=i

σst(i)

σst
(1.6)

Nodes with high betweenness are vital to the the structure and the function of the network.
In real networks, these nodes are often associated with power and influence in the organization
[6]. In power grid networks, high betweenness centrality will indicate that the node is vital to the
performance of the network. Removal of such a node might result in power rerouted to other lines,
potentially overloading them. Removal of a significant number of these nodes might cripple the
functionality of the network.

1.4.5 Network Robustness Measure

Researchers often use different metrics to quantify the robustness of a network. For instance, the
average path length of a network might be used to quantify the robustness of the network, shown in
equation 1.7, where n = |V | and dij is the shortest distance between node i and node j. The larger
the average path length, the less robust the network would be. Under such constraints, removal
of nodes which significantly increase the average paths between any two nodes would significantly
decrease the robustness of the network.

l =
1

n(n− 1)

∑
i 6=j

dij (1.7)

Another metric used to quantify robustness is efficiency of a network. Specifically, in power grids
and communication networks, efficiency of sending data between two nodes i and j is proportional
to the reciprocal of their scalar distance, as shown in equation 1.8, where n = |V | and dij is the
shortest distance between node i and node j. A drop in efficiency, due to a dropped node j, will
directly relate to the robustness of the network, often referred to efficiency drop, VE(i). Network
robustness efficiency measure can be calculated using equation 1.9.

E =
1

n(n− 1)

∑
i 6=j

1

dij
(1.8)

VE(i) =
E − Ej
E

(1.9)
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Network robustness can also be calculated by considering the largest connected component. If
removal of a few nodes significantly decrease the size of the largest connected component, then the
network is considered to vulnerable, i.e. not robust. A study on the robustness of the European
Power Grid under targeted attack quantifies robustness by measuring the size of the largest con-
nected component, as shown in equation 1.10, where n = |V | and n′ is the number of nodes in the
largest connected component. The total run time to compute the largest connected component of
a graph is Θ(|V |+ |E|) [26].

G =
n′

n
(1.10)

1.5 Prior and Related Work

Network robustness has been studied for infrastructure networks, like power grids and air transport
networks. Robustness in such networks guarantee that normal functionality is sustained in the face
of failures or attacks.

Tu et. al [28] studied the robustness of simulated power grid network. These networks were
generated to have properties such as scale-free and small world. A variety of different centrality
metrics were used. The robustness metric used in this study was the number of unserved stations
or, in other words, the number of disconnected nodes. Another study by Wang et. al [30] studied
the IEEE 57 and IEEE 118 synthetic netowrk power systems using betweenness centrality. In this
study, the robustness measure focused specifically on cascading failures of power grids, failures
which would spread throughout the network - a common feature of power grid networks.

Lordan et. al [20] studied network robustness in the context of air transport network with
betweenness. The study determined that the hub-and-spoke model, which is often used by airlines,
is too sensitive to closures and can be easily manipulated. Such designs can have huge financial con-
sequences for airlines in natural disasters, like the eruption of the Icelandic volcano Eyjafjallajökull
in 2010, as well as targeted attacks [8].

1.6 A Sequential Algorithm

The state of the art algorithm used to compute the betweenness of a network was developed by
Ulrik Brandes in 2001. Brandes was able to reduce the time complexity of betweenness to O(nm)
from Θ(n3) and space complexity to O(n+m) from Θ(n2) [7]. Pseudocode of this algorithm, from
Brandes’ paper, is provided below. Brandes’s algorithm takes advantage of a few facts to achieve
this. First, Brandes proves that a vertex v ∈ V lies on a shortest path, between vertices s, t ∈ V ,
if and only if dG(s, t) = dG(s, v) + dG(v, t)., meaning that the shortest path between two nodes
that are not neighbors will go through an intermediary node. Moreover, Brandes also proves that
if there is exactly one shortest path from s ∈ V to each t ∈ V , the dependency of s on any v ∈ V
obeys δ(s|v) = Σw:v∈Ps(w)(1 + δs|w), where Ps(w) is the set of predecessors on the shortest path.

1.7 A Reference Sequential Implementation

Discuss here your implementation of the basic sequential code. Include what language/paradigm
you used for the code.

- Yet to be implemented
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Algorithm 1 Betweenness Centrality in Unweighted Graphs:

1: CB[v]← 0, v ∈ V
2: for s ∈ V do
3: S ← empty stack;
4: P [w]← empty list, w ∈ V ;
5: σ[t]← 0, t ∈ V ; σ[s]← 1;
6: d[t]← −1, t ∈ V ; d[s]← 0;
7: Q← empty queue;
8: enqueue s→ Q;
9: while Q not empty do

10: dequeue v ← Q;
11: push v → S;
12: for all neighbor w of v do
13: //w found for the first time?
14: if d[w] < 0 then
15: enqueue w → Q;
16: d[w]← d[v] + 1

17: end if
18: if d[w] = d[v] + 1 then
19: σ[w]← σ[w] + σ[v];
20: append v → P [w];

21: end if
22: end for all
23: end while
24: δ[v]← 0, v ∈ V ;
25: //S returns vertices in increasing order from s
26: while S not empty do
27: [p[ w ← S;
28: for v ∈ P [w] do

29: δ[v]← δ[v] + σ[v]
σ[w] · (1 + δ[w]);

30: end for
31: if w 6= s then
32: CB[w]← CB[w] + δ[w];

33: end if
34: end while
35: end for

Version 1.0 Page 7



Betweenness

Figure 1.1: Seconds needed to compute the betweenness centrality with varying number of vertices
for graphs ranging from 10% to 90% density [7].

1.8 Sequential Scaling Results

Brandes’ fast betweenness centrality algorithm was compared to Freeman’s original betweenness
centrality algorithm on Sun Ultra 10 SparcStation with 440 MHz clock speed and 256 MBytes of
main memory. The result is shown in the Figure 1.1. Note that the original standard algorithm,
which is Freeman’s, does not vary much with different types of graphs. However, Brandes’ algorithm
is dependent on the number of edges and the time scales accordingly.

The experiment for this chapter was implemented with NetworkX, a very popular graph anal-
ysis package on Python. The built-in betweenness centrality measure already utilizes Brandes’
algorithm. The experiment took full advantage of this. Varying sizes of scale-free, small-world,
and complete graphs were the inputs into the sequential program. In every iteration, the program
calculated the betweenness centrality of all the nodes, then removed the most central of these nodes,
and disconnecting all of its edges. The largest connected component is then measured, as a fraction
of the original connected graph. The results show that for randomly generated scale-free networks,
as the graph increase in size, the average time required to calculate betweenness centrality grows
super-linearly. Moreover, it also shows that in some cases, with the removal of a handful of nodes,
16 nodes for the 100 node scale-free model, robustness is decreased significantly, by more than 40%
in the 100 node scale-free network.

Running the same pipeline on randomly generated small-world networks of varying sizes, pro-
duces similar results, as shown in Figure 1.3. The small-world network seems to be slightly more
robust than the scale-free network, as removal of 17 nodes lead to a largest connected component
of 80%, whereas in the scale-free network the size would be 60%, for the 100 node graph. Moreover,
for the 200 node graphs, the small-world network is slightly more robust with a largest connected
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(a) Size of the resulting largest connected component
in comparison with the original component with the
removal of the highest betweenness centrality node.

(b) Average time required to calculate betweenness
centrality, at every iteration, for different size scale-
free graphs. Note: the axis are in log-log base 2.

Figure 1.2: Results of scale-free betweenness centrality targeted attacks.

(a) Size of the resulting largest connected component
in comparison with the original component with the
removal of the highest betweenness centrality node.

(b) Average time required to calculate betweenness
centrality, at every iteration, for different size small-
world graphs. Note: the axis are in log-log base 2.

Figure 1.3: Results of small-world betweenness centrality targeted attacks.

component size of approximately 85% after 30 node removals, whereas the largest connected com-
ponent for the scale-free network is slightly less than 80%. Similarly, the average time requirement
for the betweenness centrality is also super-linear in the small-world network, and matches the
scale-free network very well.

This experiment was also conducted on complete graphs of varying sizes. Complete graphs have
all nodes connected to each other, and will contain the maximum number of edges possible, i.e.
|E| = n(n − 1). Such a graph would test the upper limit, in terms of edges, of the betweenness
centrality since Brandes’ algorithm is dependent not only on the number of nodes, but also on the
number of edges. The results are displayed in Figure 1.5, please note that although the average
time required for the 800 node complete graph is the same as the time for 3200 node of the scale-free
and the small-world networks. Moreover, the complete graph’s robustness is the best between the
three models, as removal of 30% of the nodes for the 100 node complete graph only decreases the
robustness by approximately 30%.

The pipeline was also ran on a real power grid network of the Western United States. This real
data set consists of approximate 5, 000 nodes and 6, 500 edges, with a diameter of 46 edges and the
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(a) Size of the resulting largest connected component
in comparison with the original component with the
removal of the highest betweenness centrality node.

(b) Average time required to calculate betweenness
centrality, at every iteration, for different size com-
plete graphs. Note: the size of the graphs differ.

Figure 1.4: Results of complete graph betweenness centrality targeted attacks.

(a) Size of the resulting largest connected component
in comparison with the original component with the
removal of the highest betweenness centrality node.
Removal of 28 makes the network vulnerable.

(b) Time required to calculate betweenness central-
ity at every iteration. Note: the time required to cal-
culate betweenness correlates well with the largest
connected component.

Figure 1.5: Results of complete graph betweenness centrality targeted attacks.

largest degree being 19, but an average degree of 2.67. The low average degree signifies that a large
majority of the nodes are connected as an intermediary between two other nodes. However, the
maximum degree signifies that there are certain hubs within this network. The degree distribution
follows a power law, and hence the graph can be modeled well with a scale-free network. With
the removal of just 28 nodes using the betweenness centrality, the largest connected component
is decreased by about 35%. In other words, with the removal of just 0.567% of the nodes from
the original graph, the largest connected component is decreased significantly. Moreover, as the
largest connected component of the network decreases, so does the time required to calculate the
betweenness centrality, and is correlated with the size of the largest connected component. It is
obvious from this experiment that with the use of betweenness centrality, networks can be attacked
successfully, where the largest connected component can be significantly reduced.

Version 1.0 Page 10



Betweenness

1.9 A Parallel Algorithm

Madduri et. al [21] presents several different parallel algorithm to calculate betweenness centrality.
One works well on graphs with small diameter, by taking advantage of the sequential Brandes’s
algorithm and an augmented breadth-first-search (BFS). Each processors execute independently
while updating the final centrality score. While the time complexity is comparable to the runtime
complexity of Brandes’s algorithm, this approach requires O((n+m)p), where n is the number of
nodes, m is the number of edges, and p is the number of processes. Such a constraint make this
approach unfeasible on large graphs.

The second approach is a fined grained parallelization of augmented BFS. Starting at the source
vertex s, The number of visited nodes are slowly increased while simultaneously computing the
shortest paths using augmented BFS. A multiset of predecessors associated with each vertex, is
maintained, where a vertex v belongs to a multiset of w if 〈v, w〉 ∈ E and d(s, w) = d(s, v)+1. The
access to the shared data structure, such as the multiset and stack, will need to be synchronized
[21]. Using the XMT implementation on 16 processors, Madduri et. al is able to obtain an average
speedup of 10.5.

1.10 A Reference Parallel Implementation

Jin et. al [18] designed a parallel implementation of the edge betweenness centrality measure for
use on power grid networks. Comparing against the sequential Brandes’s algorithm, the parallel
implementation is 55 times faster when ran on 64 processors. The parallel implementation works
by first separating the nodes and the edges into two structures. A modified Brandes’s algorithm
is used on the array of records, one for each node. A record of the location of the node in the
stack, the location of the node in the heap, and the ID of each predecessor node is kept. A binary
min heap of the nodes are kept which organizes the predecessors and the children of any particular
node.

The algorithm is implemented on the Cray XMT, and takes advantage of the automatic par-
allel XMT compiler. Iterations to calculate the betweenness centrality is independent because
independently-sourced shortest paths are analyzed. Commands are sent to XMT compiler to allow
for parallel processors without synchronization. The implementation also takes advantage of topo-
logical features of power grids. A reciprocal power flow is calculated and used as the weight of an
edge. Edges with short distances are more likely to lie on multiple shortest paths, and will likely
have higher betweenness values. Figure ?? shows the speed up curve of this study.

1.11 Parallel Scaling Results

Discuss here results from parallel algorithm. Include software and hardware configuration, where
the input graph data sets came from, and how input data set characteristics were varied. Ideally
plots of performance vs BOTH problem size changes AND hardware resources are desired. Did the
performance as a function of size vary as you predicted?

- Yet to be implemented

1.12 Conclusion

Summarize your paper. Discuss possible future work and/or other options that may make sense.
- Yet to be implemented
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Figure 1.6: Speed up curve for power grid networks of different sizes on the Cray XMT [18].

1.13 Response to Reviews

The review was very through. I learned that there were typos which I had missed in the first
iteration. Moreover, there were some very useful comments and suggestions. For instance, there
were some assumptions I had made, since the material made sense to me. However, to a reader
with limited background knowledge, these assumptions were not fully explained. I have tried to
address the comments and comply with the suggestions, but I did find that some suggestions were
already addressed but at a later part in the paper. Nonetheless, the comments were very helpful,
especially ones suggesting that I add more sources, and explanation in some areas of the paper.
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Pak Chung Wong. A novel application of parallel betweenness centrality to power grid con-
tingency analysis. In Parallel & Distributed Processing (IPDPS), 2010 IEEE International
Symposium on, pages 1–7. IEEE, 2010.

[19] Loet Leydesdorff. Betweenness centrality as an indicator of the interdisciplinarity of scientific
journals. Journal of the American Society for Information Science and Technology, 58(9):1303–
1319, 2007.

[20] Oriol Lordan, Jose M Sallan, Nuria Escorihuela, and David Gonzalez-Prieto. Robustness of
airline route networks. Physica A: Statistical Mechanics and its Applications, 445:18–26, 2016.

[21] Kamesh Madduri, David Ediger, Karl Jiang, David A Bader, and Daniel Chavarria-Miranda. A
faster parallel algorithm and efficient multithreaded implementations for evaluating between-
ness centrality on massive datasets. In Parallel & Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pages 1–8. IEEE, 2009.

[22] Natarajan Meghanathan. Use of eigenvector centrality to detect graph isomorphism. arXiv
preprint arXiv:1511.06620, 2015.
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