
Chapter 1

Spectral Community Detection

Contributed by Satyaki Sikdar

1.1 Introduction

Humans are highly selective when choosing who they interact with. This is visible while people
choose who they want to be friends with from a group of people, or when researchers choose their
collaborators. Social scientists call this process link formation. As expected, the process of link
formation in complex networks, is deliberate and non-random. As a result, not every node gets
the same share of edges to connect. A small number of nodes, called hubs, become part of the
majority of the links, while the other nodes share a modest number of links between them [3].
In the world wide web and social networks, hubs hold a position of authority and influence. For
example, Facebook, Google, and Amazon dominate their respective domains despite the presence of
hundreds of competitors [20]. This is partly attributed to them being hubs in the complex network
of the World Wide Web.

Sociologists first studied the theory of link formation in social networks, looking at the interac-
tion between groups of people. The findings identified homophily [34], or the tendency of individuals
to bond with other individuals they share a collective identity — gender, race, class, political views,
and social roles, as the main driving force [9, 1, 35]. This not only results in the formation of links
but also determines their strength. More frequent, stronger ties form between more similar users,
and weaker ties which keep the network together form sporadically [17]. This leads to the forma-
tion of communities or clusters in the network, with nodes in each community having more links
to other nodes in the same community than to the nodes in the rest of the network. This effect is
not restricted to just social networks. In specific networks, communities make intuitive sense. For
example, in social and telecommunication networks, clusters represent social circles; in collabora-
tion networks, the clusters represent researchers working on similar areas of research, and so on.
Moreover, communities are often nested, with smaller communities combining to form larger com-
munities [26]. In the collaboration network of researchers across multiple disciplines, each discipline
could be separable into large individual clusters, and inside each of them, there could be smaller
clusters representing sub-disciplines. Extracting this higher-order interaction between the nodes is
very useful in tasks like graph mining and graph compression. Community detection techniques
therefore are used widely in many graph compression [22] and summarization algorithms [23].

While the presence of community structure in complex networks is ubiquitous, the degree of
expression varies. In networks like the collaboration network among researchers [37], the clusters
are highly separable. Researchers are more much more likely to collaborate with people who
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work in similar areas as them. The small group of researchers who do inter-disciplinary research
keep the entire network connected. However, in some cases, as in friendship networks, the clusters
represent social circles, which by nature are overlapping and messy [30]. Most community detection
algorithms usually are more effective in graphs where the clusters are well defined.

1.2 The Problem as a Graph

In a graph G(V,E) where V is the set of nodes and E is the set of edges, a community detection
algorithm generates a cover C = {C1, C2, · · · , Ck} of k communities where nodes lying in the same
community are placed in the same set, and

⋃
iCi = V , that is, every node in the network is assigned

to at least one community.
In disjoint community detection, each node is assigned to exactly one community. Formally,

∀ i, j, Ci ∩ Cj = ∅. In comparison, in overlapping community detection, each node can be a part
of multiple communities, that is, ∃ i, j, Ci ∩ Cj 6= ∅.

The intuition behind community structures given in Section 1.1 can be formalized as follows.
For a community C with nC nodes, let nint(C) and next(C) denote the internal and external
edge counts, signifying the number of edges having both endpoints and exactly one endpoint in C
respectively. Both these counts are normalized by their maximum values to get the internal and
external edge densities represented by δint(C) and δext(C). The numerator of δext(C) is also called
the cut value of C (cut(C)). For a good clustering C, the internal edge density for each cluster
should be much greater than the external edge density. Mathematically,

δint(C) =

∑
i∈C
j∈C

Aij(
nC
2

) δext(C) =

∑
i∈C
j /∈C

Aij

nC · (n− nC)
cut(C) =

∑
i∈C
j /∈C

Aij

where A and n represent the adjacency matrix and the number of nodes in the graph G.
In this chapter, only disjoint community detection techniques are analyzed.

1.3 Some Realistic Data Sets

There are several repositories of real-life networks on the internet [10, 29, 24]. Almost all complex
networks are expected to have some amount of community structure when compared to a random
graph of similar size. As described in Section 1.1, graphs with well defined clusters are expected to
contain a large number of triangles [6] as they are indicative of the presence of local cliques.

Due to the universality of the phenomena, it is observed in graphs of all scales. In the case
of Facebook, the famous social network, their user graph as of 2014 had 1.39 billion active users
and 400 billion edges [8]. Co-authorship networks are another class of networks that are of great
interest to researchers. In Computer Science, for example, DBLP stores the information of 4.3
million publications made by 2.1 million authors across over 5,000 conferences as of September 2018.
This sheer scale dramatically magnifies the difficulty level of the problem. However, through the
advances in research in distributed computing and using novel computing paradigms [43, 31, 46, 32],
researchers can crunch these massive networks and run the necessary algorithms.

There also exists several artificial graph generation algorithms which produce synthetic graphs
having a defined community structure which are frequently used to validate the effectiveness of
community detection algorithms. The planted partition model [11] for example, takes in the number
of nodes n, the number of communities l, and the mixing parameter µ as an input. A node shares

Version 1.0 Page 2



SCD

a fraction 1 − µ of its links with the other nodes of its community and a fraction µ with the
other nodes in the network. A lower µ signifies a more prominent community structure. The
planted partition model generates a network having l groups of (nearly) equal size. Benchmarks
like the LFR benchmark graph generator [27] is more flexible than the planted partition model. In
addition to the parameters in the previous model, it allows the user more control over the degree
distribution as well as the size distribution of the communities. This model has been extended to
generate directed graphs with possibly overlapping community structures as well [25].

1.4 SCD - A Key Graph Kernel

Community detection is a widely studied area of research. Researchers have chosen multiple ap-
proaches to tackle this problem. A few popular ones involve using spectral techniques [36], graph
sparsification [5, 44], traversals [42, 4], and greedy optimization of quality measures like modular-
ity [7]. For a more comprehensive review of existing methods, see [15, 16].

For this report, two spectral clustering techniques are now described in detail.
The core premise of spectral clustering is that the eigenvectors of the matrices associated with a

graph encode local information which can be used for clustering the nodes. The advantages of the
spectral clustering methods come from their efficiency and mathematical elegance. Additionally,
they usually have provable bounds of the quality of clusters produced. For a survey on spectral
graph clustering methods, see [36].

The nodes and edges in a graph are described in an abstract space where the conventional
notion of distance between objects does not apply. This is unlike a metric space, where each object
is embedded in d-dimensions. Conventional machine learning tasks like classification or clustering
expect the input data to be in a metric space, so they cannot be directly used for data represented
as graphs. Spectral clustering, however, generates a d-dimensional metric space embedding of the
nodes, i.e., each node gets assigned a d-dimensional coordinate. In addition to that, it ensures
that the nodes that share direct links, or who are part of the same cluster, are spatially closer too.
This results in the transfer of the link and community information from the abstract space to the
metric space. In the bipartition algorithm described in Section 1.4.1, each node is embedded in
1-dimensional (metric) space, while in the algorithm in Section 1.4.2, it is k-dimensional.

1.4.1 Spectral bipartition

Fiedler [14] described how the eigenvector corresponding to the second smallest positive eigenvalue
of the Laplacian matrix, known as the Fiedler vector, can be used to find an approximation for the
graph bipartitioning problem.

Hagen et al. [18] proposed an algorithm whose pseudocode is given in Algorithm 1. Nodes are
divided into two clusters p1 and p2 depending on whether the corresponding entry in the Fiedler
vector is above or below the given threshold r. The choice of r therefore influences the quality of
clusters. Popular choices include 0 and the median value of the Fiedler vector.

The computation of the Fiedler vector dominates the computational complexity of the algo-
rithm. The fastest known method, the Lanczos method [28] takes linear time i.e., O(|V |+ |E|). So,
the overall time complexity of Algorithm 1 is also O(|V |+ |E|).

1.4.2 k-way spectral partition

Ng et. al [40] extends the idea of bipartitioning described above into k-way partitioning as follows.
Instead of using just the Fiedler vector, they use the k smallest non-trivial eigenvectors. Addi-
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tionally, each row of the eigenvectors is normalized by its L2 norm. By doing so, they generate a
k-dimensional embedding for each of the nodes. These embeddings are then clustered using any
conventional spatial clustering algorithm like K-means [19] to find k clusters. The pseudocode of
this algorithm is given in Algorithm 2.

The running time of the algorithm is dominated by the eigendecomposition and the time taken
by K-means to converge. In practice, the method seems to work fast and scales linearly with the
size of the graph.

1.4.3 Metrics and Quality Measures

Erdös-Rényi(ER) graphs [13] where the process of edge formation is entirely random, serves as
an essential baseline when it comes to clustering algorithms. Following the intuition provided in
Section 1.1 behind cluster formation, community structure should be absent in ER graphs. However,
as spatial clustering techniques identify spurious clusters in randomly generated data, community
detection algorithms also fall into the same trap when running on ER graphs. This potentially
defeats the purpose of extracting meaningful clusters from any graph. Therefore, being able to
quantify the performance of a community detection for a given graph is essential.

1.4.3.1 Quality Measures

Given a network and a clustering of nodes, the quality measures quantify how good is the clustering,
by assigning a score. This score allows for performance comparisons across runs of a community
detection algorithm, or among multiple algorithms run on the same network. However, there is
no universal notion of goodness in this context. Researchers have proposed several such measures,
each with its caveats. The measures that are of importance to us in the context of this report are
conductance [21] and modularity [38].

For the problem of bipartition, i.e., splitting a graph into two nearly balanced disjoint sets of
nodes such that the connections between the sets are minimized, conductance is a good choice. The
mathematical formulation follows this intuition. For a cluster C ∈ C = {C1, C2}, the conductance
score Φ(C) is defined as follows.

Φ(C) =
cut(C)

min{vol(C), vol(V \ C)}
where vol(S) is the sum of degrees of nodes in S. The numerator of Φ counts the edges that span
from C to the rest of the graph while the denominator ensures the fairness of the split. So, a smaller
ratio is indicative of a good split, since it implies the numerator is small and the denominator is
large. One of the drawbacks of using conductance is that it is unsuitable for scoring multi-way
partitions when the graph is split into more than two clusters.

Modularity, on the other hand, is more suitable for scoring k-partitions. The rationale behind
stems from the idea of the deliberate and non-random nature of link formation behind community
formation. For every cluster C ∈ C = {C1, · · · , Ck}, it computes the difference of the fraction of the
number of edges in C and the expected fraction if edges were distributed randomly. Mathematically,
the modularity score of a partition Q(C) is

Q(C) =
∑
C∈C

[
lC
m
−
(
kC
2m

)2
]

where lC and kC is the number of edges inside and the sum of degrees of nodes in C, and m is the
number of nodes in the graph. A higher modularity represents a better clustering since it means
that the actual fractions of edges lying inside the communities is more than the expected values.
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1.4.3.2 Comparing Partitions

In certain cases, being able to compare the clusterings in a more granular scale is advantageous
over computing aggregate scores. For benchmark graphs, ground truth cluster assignments are
available. So, the effectiveness of a clustering algorithm can be judged by comparing how closely
the extracted clustering resembles the actual clustering. Borrowing ideas from information theory,
one popular method is to compute the Mutual Information between the two clusterings [12], with
higher scores signifying more similarity. Sometimes, the metadata can be used to guide the process
of finding communities [41] to produce more meaningful clusters.

Algorithm 1 Approximate minimum cut of a connected graph G for a given threshold r

1: procedure approx min cut(G(V,E), r)
2: clusters ← ∅
3: if G has fewer than 2 nodes then
4: clusters ← V
5: else
6: fiedler ← Fiedler vector of G
7: p1 ← nodes ids with value less than r in fiedler

8: p2 ← rest of the nodes in G
9: clusters ← clusters ∪ { p1}

10: clusters ← clusters ∪ { p2}
11: return clusters

Algorithm 2 k-way spectral partitioning of a connected graph G

1: procedure k way spectral(G(V,E), k)
2: clusters ← ∅
3: if G has fewer than k nodes then
4: clusters ← V
5: else
6: L ← Laplacian matrix of G
7: evecs ← k-smallest non-trivial eigenvectors of L
8: Normalize each row of evecs by its norm
9: Run K-means clustering on evecs to find k clusters C = {C1, · · · , Ck} using Euclidean

distance
10: clusters ← C
11: return clusters

1.5 Prior and Related Work

Spectral clustering remains a popular choice for finding clusters for reasons mentioned in Section 1.
While the core premise of using eigendecompositions to encode structural similarity is shared across
all the methods, each algorithm has its own uniqueness built into it and sees applications in a variety
of domains, like computer vision [45, 33] and VLSI design [2]. In each of these methods, some variant
of the minimum-cut problem is solved. Additionally, there have been methods like [39] which
maximizes the modularity of the partitions. For a more detailed overview of spectral clustering
techniques, see [36].
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1.6 A Sequential Algorithm

For implementing Algorithms 1 and 2, we use Python with NetworkX1, numpy2, scipy3, and
scikit-learn4 libraries. NetworkX provides easy to use containers for graphs as well as sup-
porting functions like computing the Laplacian matrix and the Fiedler vector of a graph. SciPy

facilitates easy computation of eigenvectors of arbitrary matrices and scikit-learn has a built-in
implementation of the K-means algorithm.

1.7 A Reference Sequential Implementation

Python implementation of Algorithm 1

import networkx as nx

def approx_min_cut(G, r):

assert nx.is_connected(G), "the graph must be connnected"

clusters = []

if G.order() < 2:

clusters = list(G.nodes())

else:

# compute the Fiedler vector

fiedler_vec = nx.fiedler_vector(G, method=’lanczos’)

# p1 and p2 stores the nodes in each partition

p1, p2 = set(), set()

for node_id, fiedler_val in zip(G.nodes(), fiedler_vec):

if fiedler_val < r:

p1.add(node_id)

else:

p2.add(node_id)

clusters.append(p1)

clusters.append(p2)

return clusters

Python implementation of Algorithm 2

import networkx as nx

import numpy as np

import scipy.sparse.linalg

from sklearn.cluster import KMeans

import sklearn.preprocessing

def k_way_spectral(G, k):

assert nx.is_connected(G), "the graph must be connnected"

clusters = []

1https://networkx.github.io
2http://www.numpy.org
3https://www.scipy.org
4http://scikit-learn.org
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if G.order() < k:

clusters = list(G.nodes())

else:

L = nx.laplacian_matrix(G)

# compute the first k + 1 eigenvectors

_, eigenvecs = scipy.sparse.linalg.eigs(L.asfptype(), k=k+1, which=’SM’)

# discard the first trivial eigenvector

eigenvecs = eigenvecs[:, 1:]

# normalize each row by its L2 norm

eigenvecs = sklearn.preprocessing.normalize(eigenvecs)

# run K-means

kmeans = KMeans(n_clusters=k).fit(eigenvecs)

cluster_labels = kmeans.labels_

clusters = [[] for _ in range(max(cluster_labels) + 1)]

for node_id, cluster_id in zip(G.nodes(), cluster_labels):

clusters[cluster_id].append(node_id)

return clusters

1.8 Sequential Scaling Results

Table 1.1: Average running time in seconds across 5 runs of algorithms 1 and 2 on graphs generated
using the LFR benchmark using default parameters.

k-way spectral

|V | |E| approx min-cut k = 3 k = 4 k = 5

100 788 0.018 0.349 0.259 0.068
1,000 7,339 1.556 1.867 1.464 2.051

10,000 62,029 5.997 3.757 8.998 6.109
100,000 765,073 60.654 71.142 72.926 71.33

The experiments are run on one node of the CRC cluster with 64 cores and 128 GB memory.
The graphs are generated using the LFR benchmark using the default parameters (〈k〉 = 16, γ =
−2, β = −1, µ = 0.1) except for the number of nodes which are set to powers of 10.

The results are summarized in Table 1.1 and plotted on a log-log scale in Figure 1.1. The lines
in Figure 1.1 are fairly straight, thus empirically the algorithms scale up linearly with the number
of nodes as expected in Section 1.6.

1.9 Conclusion

This report covers the Spectral Community Detection kernel. It starts by looking at the causality
behind the formation of communities, and then formalizes the problem in the language of graph
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Figure 1.1: Running time plot on a log-log scale based on the data in Table 1.1

theory. It then discusses two popular algorithms, followed by their sequential implementation and
scaling results.

Future work is summarized below.

• Testing the running times on more benchmark and real-world networks.

• Testing the quality of partitions using the measures described in Section 1.4.3.

1.10 Response to Reviews

• Added explanation for link formation in Section 1.1

• Added explanation for a hub.

• Added a paragraph in Section 1 explaining what embeddings are.

• Corrected the error in line 7 of algorithm 1.

• Added a citation for K-means instead of explaining it in short.
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