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Analyzing Neural Network
Optimization with Gradient Tracing

Contributed by Brian DuSell

1.1 Introduction

Neural networks have led to state-of-the-art results in fields such as natural language processing
[3] and computer vision. However, their lack of interpretability remains a persistent and serious
shortcoming. Even though neural networks often outperform other machine learning techniques, it
is typically impossible to come up with an intuitive explanation for the solution that the network
learns from its inscrutable network of connections. Research has been increasingly focused on devel-
oping specialized neural network architectures which include components that impose an inductive
bias on the model that is particularly suited to the task at hand, and additionally may lead to more
interpretable solutions. For instance, recent neural machine translation models have made heavy
use of “attention” mechanisms, whereby a model learns to translate a sentence word-by-word by
focusing attention on select source words at each step [1].

Adding specialized components to a network typically has one or more of the following pur-
poses: (a) to increase the network’s modeling power, (b) to make the network more feasible to train,
and (c) to make some aspect of it inherently interpretable. A recurrent neural network (RNN) is
an extension to neural networks that can operate on sequences of variable length. Stack RNNs,
Queue RNNs, and Neural Turing Machines are all examples of adding stack, queue, or tape data
structures to a recurrent neural network (RNN) in order to increase its modeling power, allowing
it to learn algorithmic solutions that generalize to sequences much longer than those encountered
during training [4, 7, 5]. Long short-term memory networks (LSTMs) and gated recurrent units
(GRUs) are specifically designed to address trainability issues of RNNs [6, 2]. Finally, the aforemen-
tioned attention mechanism produces readily interpretable alignments between words in a source
and target sentence.

In this chapter, we explore the effect of neural network components on trainability with a
graph-traversal technique dubbed “gradient tracing.” The standard technique for training neural
networks, called backpropagation, involves the flow of “erro,” or gradient, backward through the
components of the network. Gradient tracing is a technique of analyzing the flow of gradient
through those components; its goal is to analyze the extent to which certain components influence
parameter updates and facilitate learning.
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1.2 The Problem as a Graph

We can model the training of a neural network as the propagation of error through a directed
acyclic graph (DAG) known as a computation graph. This process is known as “backpropagation.”
Neural network components form subgraphs of the computation graph. By examining the amount
of gradient that flows through a particular neural network component, we can measure the com-
ponent’s influence on the network’s parameters during training. We first review gradient descent
for neural networks and then relate this to the propagation of gradients through the computation
graph. Then, we express backpropagation as a graph kernel and introduce gradient tracing as a
closely related variant of backpropagation.

1.2.1 Gradient Descent

A neural network consists of a collection of real numbers called “parameters” (which we denote θ)
and a function (say f) that uses those parameters to map a vector of inputs (say x) to a vector of
outputs (say y). The parameters often, but not always, represent the strengths of “connections”
between “activation units,” which are analogous to synapses and neurons in a biological brain. The
goal of neural network optimization, or “training,” is to adjust the parameters so that they better
approximate a desired function. This is particularly useful in scenarios where the desired function
is poorly understood or extremely complex. Although the definition of the function f never changes
during training, different parameter values cause the network to model different functions of x.

Gradient descent is a standard technique for training neural networks. For each pair of vectors
(x, ŷ) in a collection of training data, the algorithm attempts to minimize a scalar-valued loss
function, say L, which quantifies the dissimilarity between the predicted output y = f(x) and
the desired output ŷ. The loss function decreases when the predicted and desired outputs match.
Gradient descent automatically optimizes the model by repeatedly computing the gradient of the
loss function with respect to θ and nudging θ in the opposite direction by a small amount. We can
express this as the update rule

θ′ = θ − η∇θL(f(x; θ), ŷ) (1.1)

where η is a learning rate. Note that the use of the gradient restricts the functions L and f
to functions that are differentiable with respect to θ. This update rule is applied for multiple
iterations until the loss stops decreasing, performance on a held-out set of data stops improving, or
some other stopping criterion. Note that gradient descent only guarantees finding a local minimum,
not a global one.

For simplicity, we have described gradient descent on a single training pair. However, true
gradient descent uses a loss function that quantifies error on the entire training set at once (which
may simply be the sum of the losses for each training pair). In this case, the parameters are not
changed until the entire training set has been seen (after one “epoch”), before starting another
iteration. In practice, the training set is often partitioned into smaller “mini-batches,” and the
parameters are updated after each “mini-batch,” or several times per epoch.

1.2.2 Automatic Differentiation and Backpropagation

Automatic differentiation is an efficient and general algorithm for computing gradients of compli-
cated functions. The algorithm exploits the chain rule of calculus to compute the gradient of a
function using a fixed library of simpler functions whose derivatives have already been programmed
by hand. This algorithm is typically called “backpropagation” in the specific context of computing
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the gradient of L with respect to θ in neural networks during gradient descent, but it can be used
for any differentiable function. The backpropagation routines of several popular neural network
libraries, such as PyTorch and DyNet, are based on automatic differentiation.

In gradient descent, the task is to compute the gradient of L with respect to θ for a constant
x and ŷ. In the case of a multi-layer feed-forward network, the process of computing this gradient
can be viewed as the propagation of error from the loss function backward through the layers of
the network, updating connection weights in proportion to the amount that they increased the loss
function when applied to x and ŷ. Given a specific x and ŷ, any neural network, including feed-
forward and recurrent models, can be unrolled into a computation graph. A computation graph is
a representation of the mathematical operators that define the neural network and loss function as
an abstract syntax tree. The leaves of the tree correspond to constants or learned parameters, and
interior vertices represent functions on sub-expressions; the root vertex is the top-most operator of
L, which we denote `. Edges between vertices correspond to the usage of expressions as function
arguments higher up the tree. The ordering of incoming edges (function arguments) is significant,
whereas outgoing edges are unordered. Since sub-expressions can be shared, the “tree” is actually
a graph in the general case. Additionally, since it is a representation of a mathematical expression,
it is always acyclic, forming a DAG.

1.2.3 The Chain Rule

We now review the definition of the chain rule. The chain rule of calculus for functions of one real
variable x is

d

dx
f(g(x)) = f ′(g(x))

d

dx
g(x) (1.2)

This rule states that the derivative of a composite function f(g(x)) can be computed automatically
given that the function f ′ is known. For more complex cases where g is also a composite function,
the rule can be applied recursively. This principle generalizes to functions of multiple variables and
functions of vectors, where the rule takes the form

∂

∂xi
f(g(x)) = ∇f(g(x)) · ∂

∂xi
g(x) (1.3)

=
∑
k

f ′k(g(x))
∂

∂xi
gk(x) (1.4)

where f ′k is the kth element of ∇f . Auto-differentiation applies this rule recursively, “propagating”
the gradient from the root vertex for the loss function back to the vertices for the parameters
of the network in topological order. Auto-differentiation avoids redundant gradient computations
by saving previously computed gradients at each vertex rather than re-computing them for every
input, allowing the algorithm to run in linear time with respect to graph size. In this sense, auto-
differentiation is a dynamic programming algorithm. Backpropagation computes the values ∇fL
for each function f in the computation graph. Backpropagation is complete when it reaches all of
the (leaf) vertices for the parameters θ, at which point it has computed the needed values of ∇θL.

1.2.4 Graph Model of Backpropagation

We can express auto-differentiation/backpropagation as a graph kernel on a computation graph
G = (V,E). Let each vertex u ∈ V be a variable or operator in the mathematical definition of the
neural network model. The vertex u corresponds to the output of a function u(x1, . . . , xn). Let
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u′k be the function corresponding to the derivative of u with respect to xk. The subtree rooted at
vertex u represents a function U of the parameters θ. Let each edge (u, v, k) ∈ E indicate that the
output of operator v is used as the kth argument to operator u. Note that k is necessary in order to
record the ordering of incoming edges. If the operator u has multiple arguments, then the gradient
with respect to those arguments may differ depending on the argument, e.g. u(x, y) = x/y.

Suppose that the output of every operator u has already been computed during a “forward”
pass through the network and is available as the value cu. Let the weight w(u, v, k) of edge (u, v, k)
be defined as

wi(u, v, k) = u′k(cv) (1.5)

Let gv be the gradient of L with respect to the function U whose subtree is rooted at vertex/operator
v. The backpropagation graph kernel consists of computing

gv =
∂L

∂U
=

{∑
(u,v,k)∈E w(u, v, k)gu v 6= `

1 v = `
(1.6)

for all v ∈ V as necessary to compute gθi for each θi, where ` is the root of computation graph.
Figure 1.1 shows an example computation graph extracted from a neural network implemented

in PyTorch. Intuitively, backpropagation traverses the computation graph in topological order,
starting at the root `, and computes gv upon visiting each vertex v. The only constraint is that
the incoming vertices of v must have been traversed before reaching v. Note that this process can
be used to compute the gradients for all θi simultaneously.

Backpropagation may alternatively be viewed as computing the sum of the weights of all paths
leading into each parameter θi, where the weight of a path is defined as the product of all of
its edges. Backpropagation can be turned into a different algorithm by changing the meaning of
sum and product, thereby changing the semiring that it uses. We will see that gradient tracing is
actually the backpropagation algorithm but with a different semiring.

1.2.5 Graph Model of Gradient Tracing

The goal of gradient tracing is to identify which paths through G, and thereby which architectural
components in the network, contribute most to the parameter update ∇θL. This is by done by
identifying the path in the computation graph that transmits the most gradient to each parameter
θi, and then identifying the components which the path intersects. Let us denote the most influential
parent operator on operator v as tv. This simply corresponds to the term in Equation 1.6 with the
greatest absolute value. The gradient tracing graph kernel computes

tv =

argmax
u|(u,v)∈E

|w(u, v)gu| v 6= `

nil v = `
(1.7)

for all v ∈ V necessary to connect a path from θi to `.1 We deem a component C, a subgraph of
G, to have more influence on θi when the gradient tracing path passes through C for more (x, ŷ)
pairs.

Note that gradient tracing is the backpropagation algorithm with a different sum operator. In
place of computing the sum of incoming edge weights, it computes the edge with the maximum
absolute value. Thus gradient tracing is a variant of backpropagation with a different semiring.

1The function argmax
u|(u,v,k)∈E

|w(u, v, k)gu| returns the vertex u of the edge (u, v, k) that maximizes the expression

|w(u, v, k)gu|.
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1.2.6 Implementation Considerations

It should be noted that, in order to boost performance, serious implementations of backpropaga-
tion do not operate on scalar values, but instead on “tensors”: multi-dimensional arrays of real
values that are stored contiguously in memory. Processors and especially graphical processing units
(GPUs) can take advantage of locality and parallelism to accelerate computation significantly. Con-
sequently, the inputs and outputs of operators in the computation graph are usually tensors rather
than scalars, and both forward values and gradients are computed using tensor-level operations.
The same scalar-level mathematics described above still apply; the only difference is that the primi-
tive operators in the computation graph are always tensor-level operations, which may encapsulate
multiple edges and vertices in the equivalent scalar computation graph, a prime example being
matrix multiplication.

Because individual input and output tensors can still be too small to make full utilization of the
processor, tensor operations are also designed to work on “batches” of tensors, whereby multiple
input or output tensors are packed into a single tensor along a new dimension. Processors can
operate on the packed tensor faster than they could process the individual tensors in serial.

Finally, in real backpropagation implementations such as PyTorch and DyNet, the gradient is
computed as follows. Each operator u defines a function h of the form

hu(gu, cv1 , . . . , cvn) = (gv1 , . . . , gvn) (1.8)

The function h computes the outgoing gradient gvk for every argument vk, given the value ck of
each argument. In contrast to Equation 1.6, h computes derivatives and multiplies them with the
incoming gradient in the same step.

Even when dealing with tensor-level operations, the root loss operator ` must have a scalar
output for the gradient to be well-defined.

1.3 Some Realistic Data Sets

We can extract a computation graph from any neural network architecture being trained on any
data set. Indeed, the results of gradient tracing may differ depending on the data set and task at
hand, even for the same network architecture.

Suppose that we are training an RNN language model on the Penn Treebank corpus, which
contains some one million words. A model of modest size might have a vocabulary size of 10,000
words and 1,000 hidden units. This would result in roughly 2.1 million parameters and 30 × n
million edges in the computation graph, where n is sequence length.

Neural network computation graphs typically consist of a series of fully-connected layers of neu-
rons, resulting in sparse graphs with very dense sub-regions. In practice, the length of the gradient
tracing path is likely to be far shorter than the number of vertices and edges in the computation
graph. Indeed, in a simple multi-layer feed-forward network, its length will be proportional to the
number of layers.

To evaluate the effectiveness of gradient tracing in identifying important components of a neural
network, we can generate networks which connect multiple components together in competition,
then ablate the most-influential components and observe whether the number of samples that the
model requires to solve the task increases or decreases accordingly. For instance, in the context
of language modeling, we might run an RNN, LSTM, and GRU on the same input sequence x in
parallel and average their outputs together. We ablate whichever component has the most influence
during training, then the second most, and so on, verifying that the dip in performance of the model
on the given task is proportional to the importance of the removed component.
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In section 1.5 we describe an experiment which uses stochastically-generated feed-forward neural
networks.

1.4 GT-A Key Graph Kernel

Algorithm 1 defines the gradient tracing algorithm for computation graphs which consist of tensor-
level operations. It simultaneously computes the gradients and most influential paths for each
vertex v. It assumes that the forward values cv have already been computed. The computation of
derivatives is also changed to match the form of Equation 1.8.

Algorithm 1 Gradient Tracing

1: procedure TraceGradients(G) . G = (V,E) is a computation graph of tensor operations
with root vertex `

2: for each vertex v do
3: v.incoming gradients← an empty list

4: Topologically sort V so that every vertex v comes after its ancestors
5: for each vertex v in topological order do
6: if v = ` then
7: v.gv ← 1
8: v.tv ← nil
9: else

10: v.gv ←
∑

i v.incoming gradients[i]
11: v.tv ← argmax

i
|v.incoming gradients[i]|

12: if v is not a leaf node then
13: for each edge (v, u, i) do
14: xi ← u.cu
15: (x′1, . . . , x

′
n)← hv(gv, x1, . . . , xn)

16: for each edge (v, u, i) do
17: Append x′i to v′.incoming gradients

18: v.internal trace← an empty list
19: for each edge (v, u, i) do
20: v.internal trace[i]← vector of pointers to the output elements of v

that contribute the most gradient to each output element of u at position

In this pseudocode,
∑

is an element-wise sum that operates over tensors, and argmax is likewise
an element-wise argmax that operates over tensors. The value tv will be set to a vector of indices,
where each tvi identifies the incoming edge which contributes the most gradient to the ith element of
the output of v. The algorithm also computes “internal” pointers which indicate how the gradients
flowing into the output elements of v contribute to the gradients flowing out of its input elements.
Like the gradient function hv, this must be implemented differently for each operator type. The
most influential path for a parameter θi can be recovered by following the tv and internal pointers
up to the root `.

Since G = (V,E) represents a computation graph of tensor operations, |V | + |E| does not
correspond directly to the size of the graph. Let G′ = (V ′, E′) represent the equivalent, conceptual
scalar computation graphc corresponding to G. Algorithm 1 simply visits every edge and vertex
of the conceptual scalar graph a fixed number of times, so its time complexity is O(|V ′|+ |E′|).
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1.5 A Sequential Algorithm

Although the pseudocode in Algorithm 1 does not parallelize the processing of parallel graph
structures, it can already take advantage of efficient tensor-level operations to compute the gradient
and gradient trace of each vertex. In this form, the algorithm can capitalize on the large number
of efficient neural-network-oriented tensor operations that are implemented for CPUs and GPUs
in major neural network libraries. A key aspect of this algorithm is that it relies on being able to
store metadata in the form of gv (a vector of real numbers), tv (a vector of indices), v.internal trace
(a vector of indices), and v.incoming gradients (a list of vectors) directly to each vertex v. Each
vertex v should store an adjacency list of outgoing edges to make the lookup of all edges (v, u, i)
efficient.

1.6 A Reference Sequential Implementation

We re-implemented the backpropagation algorithm in the Python programming language using
the PyTorch library.2 Figure 1.1 shows an illustration of a computation graph extracted from a
two-layer feed-forward neural network. In order to handle computation graphs of several hundred
nodes in depth, it is important to implement all graph traversals and topological sorts iteratively,
without using recursion, in order to avoid hitting Python’s built-in recursion limits.

The topological sort is implemented using Kahn’s algorithm, whereby a counter of incoming
edges is attached to each vertex. Starting from the root vertex, every time an edge is traversed, the
counter of the adjacent edge is decremented. Whenever a vertex’s edge reaches 0, it is emitted as
the next element in the topological sort. This ensures that a vertex’s ancestor vertices are always
visited beforehand. Topological sorting takes time linear with respect to the number of edges and
vertices. In principle, it should be possible to avoid a topological sort altogether, since the correct
ordering simply corresponds to the order in which the computation graph expressions were created,
in reverse.

1.7 Sequential Scaling Results

We now show scaling results for the backpropagation reimplementation on computation graphs
of varying size. All experiments were run on a commodity Intel Core i7 processor without GPU
acceleration. For reference, all experiments include running times for the heavily-optimized imple-
mentation of backpropagation built into PyTorch.

The first experiment entails running backpropagation on simple feed-forward neural networks
with varying numbers of layers. In all cases, the number of hidden units per layer was fixed to 20,
the input size was fixed to 10, and the output size was fixed to 15. Each layer used a tanh activation
function. The input and target output vectors were randomly initialized (their values do not affect
running time). Note that the number of layers is directly proportional to the number of scalar
edges and vertices in the computation graph. Figure 1.2 shows that both the reimplementation
and PyTorch implementation of backpropagation appear to scale linearly with respect to the number
of layers.

2Because the gradient tracing algorithm proper requires digging into the internals of the PyTorch library, it is still
forthcoming. The cause of this is the “internal” edges that are encapsulated by the tensor-level operations, and the
fact that the PyTorch API is very restrictive when it comes to accessing the computation graph. I am communicating
with the PyTorch community to figure out how to get around this. Performance-wise, backpropagation serves as a
decent proxy for gradient tracing for now since it (a) is a prerequisite for computing the gradient trace, and (b) is
the same algorithm with a different semiring.
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Figure 1.1: Example computation graph for a two-layer feed-forward neural network represented
in PyTorch. The topmost vertex is the root of the computation graph and corresponds to the loss
function. Each vertex is labeled with the dimensions of its output tensor. Leaf nodes correspond to
tensors of parameters. Edge labels indicate the ordering of arguments. Each “ThAddmmBackward”
vertex represents an affine transformation of the form Wx+b. The vertex with a label of “None”
corresponds to an input that is not a function of any parameters and does not require its gradient
to be computed.
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Figure 1.2: Running time of the backpropagation reimplementation as a function of number of
layers. The running time of the built-in PyTorch backpropagation implementation is included for
reference. Both algorithms exhibit linear time complexity. Note that even when running times are
averaged over mulltiple runs, the spikes do not smooth out. Their cause is unclear.
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Figure 1.3: Running time of the backpropagation reimplementation as a function of graph size
(vertices+edges). The running time of the built-in PyTorch backpropagation implementation is
included for reference. Both algorithms exhibit linear time complexity.

We also ran both implementations on stochastically generated feed-forward networks containing
branches. The architecture of each network was determined according to the following recursive
procedure. The procedure starts with a single active “layer” which may be expanded into one of
two patterns. With probability 0.95, the layer is expanded into a diamond configuration of sub-
layers. In the diamond configuration, the input of the layer is re-used by two separate, intermediate
layers. The outputs of the two intermediate layers are concatenated and used as the output of the
layer. The same expansion procedure is run recursively on the two intermediate layers, except that
the expansion probability is divided by two in order to prevent an explosion in graph size. With
probability 0.05, the layer is expanded into a one-layer network. Every layer uses a tanh activation
function. The number of hidden units in each layer is chosen uniformly from [10, 500]. The sizes
of the output and input to the overall network are both 10. The inputs and outputs are randomly
initialized.

Figure 1.3 show the running time of both backpropagation implementations as a function of the
number of vertices and edges in the conceptual scalar computation graph These values are estimated
based on the dimensions and types of the tensor operator vertices; for example, a matrix-vector
multiplication with a matrix of size m × n has O(mn) scalar vertices and edges. Again, both
algorithms scale linearly with respect to the size of the scalar graph.

It is expected that the gradient tracing algorithm will have the same scaling behavior.
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Response to Reviews

Section 1.2 was organized into multiple sections describing different points of background material.
Attempted to explain the overall usefulness of gradient tracing better. Explicitly defined the mean-
ing of argmax. Added a graphic with an example of a computation graph. Described stoachastic
graph generating procedure in detail. Defined RNN in introduction. Tried to better explain the
role of the neural network function and its parameters in section 1.2. Added a reference to the
computation graph figure earlier in the chapter.
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