
Chapter 1

Graph Based Genetic Algorithms

Contributed by Kyle M.D. Sweeney

1.1 Introduction

Genetic Algorithms are fundamentally a searching algorithm for finding “good” solutions when
the solution space is excessively large. Many problem spaces, such as NP-Hard or NP-Complete
problems, are difficult because the possible solution space grows exponentially as the input size of
the problem increases. Consequently, there are no guaranteed easy solutions that can be found in
reasonable time. Searching algorithms, such as Simulated Annealing and Genetic Algorithms look
to nature to find methods of finding reasonably good solutions. In the case of Genetic Algorithms,
solutions are found by simulating evolution, pursuing a survival of the fittest approach.

Let’s take the classic travelling salesman problem [10] where a saleswoman would like to travel
from city to city, visiting each city only once, and taking the shortest route. The problem is
classically known to be NP-Hard. There are N ! possible combinations of routes to search through.
To solve the problem as a genetic algorithm, we can imagine the solution, an ordered list of cities,
to be like “DNA”, and each city is a gene. When organisms breed, they swap genes, and thus
produce new, unique children which may or may not be fitter. Genetic Algorithms require a fitness
function in order to sort out which solutions are moving towards a “good” solution, and are better
than other solutions. In this case, the fitness function is the cost of the trip, given the ordered list
of cities. In each generation, we produce a certain number of children from the solutions in the
specimen pool, add them to the pool, and then only keep a certain number which are most fit,
according to the fitness function. Eventually, we choose to stop, and the most fit function is our
“good” solution.

Of course, while exploring the natural extrema of the solution space, it’s possible for our solu-
tions to get stuck around a local extrema. What this means is that our solution specimens have
become too homogenized, and there’s not enough unique variations to choose from. In genetic
terms, there’s not enough genetic variation. One possible solution to solve this is via mutations.
By introducing mutations during the breeding stage, solutions can jump from one area of the solu-
tion curve to another, ideally pulling the rest of the gene pool away from a local extrema, and back
on the path towards a better, more optimal solution. But this genetic variation has to be carefully
controlled. Too much mutations, and the pool can never stabilize and never travel along the curve.
Too little, and mutations don’t introduce enough variability.

Another possible solution to this issue is to control the breeding process via graphs. By placing
a solution at the node of each graph, then the only possibly breeding partners are those who are

1



Graph Based Genetic Algorithms

neighbors of a given vertex. The idea is to simulate having different groups of solutions preserve
different genetic lines. For example, in nature, a single species can be found in many different parts
of the planet, but they adapt to their environment via their genetics. Occasionally cross-breeding
occurs, refreshing the genepool of both groups by introducing new genetic material.

In this paper, we wished to apply this methodology to the problem of genetic harmonization,
expanded upon in section 1.3. Here we have two different species whose codons, that is the group
of 3 nucleotides which code for a specific amino acid, produce their amino acids in different rates.
We have a DNA sequence which encodes a specific protein in one species, and we wish to find a
synonymous DNA sequence in the other species which produces the amino acids at roughly the
same rates.

1.2 The Problem as a Graph

The problem of shrinking genetic variation can be partially solved by mutations, but can also be
solved by the introduction of graphs into the problem space. In nature, the same species can be
found in multiple places around the world, yet are still breed-able with one another. These groups
are genetically similar to one another, and distinct from their cousins in different pockets in different
environments. For the purposes of solving a problem like the traveling salesman, we can employ
graphs by placing a single solution on each node to take advantage of community isolation while
permitting limited genetic-crossover. Ideally, this means that each sub-group will develop a unique
solution and by crossing over, they can help push the other groups towards more optimal solutions.
The effectiveness of this approach in speeding up/improving solutions comes from a combination
of the right kind of graph for the problem being solved.

1.3 Some Realistic Data Sets

To demonstrate integrating graphs as helpers in genetic algorithms, the rest of this chapter will
focus on the application of Genetic Algorithms in finding ideal complementary codon-sequences to
generate protiens in non-human cells at human-rates.

Every protein is comprised of Amino Acids, built inside of cells according to DNA [7]. Inside of
a DNA strand, three nucleotides are strung together to form a codon, which then codes for either a
specific amino acid, is a stop marker, or is a start marker. Each codon is used with a certain amount
of frequency, and these frequencies are species specific. Work done by Clark et al. [2] discuss the
implications of these frequencies, and work done by Rodriguez et al. [1] demonstrates an algorithm
for harmonizing DNA sequences between humans and a targeted species. These papers discuss a
method, where given a DNA sequence, and the frequencies for different species, a series of scores for
each codon, based off of those frequencies. These scores can be seen as a function over the codon
positions. While the same protein is constructed from each sequence, the “human” function and
“bacteria” function could be very different. Harmonizing the DNA, in this case, means altering
which codons are chosen in the bacteria so that the resulting “bacteria” function will be as similar
to the “human” function as possible.

Solving this harmonization problem via genetic algorithms can be done by imagining the solution
space as the chosen sequence of codons which still produce the same protein. The fitness function
would then be the difference in the area between the two functions when plotted out. By minimizing
the distance between the two functions, a harmonization can be accomplished.

The production rates and specific DNA sequence was obtained via a prior project done in
collaboration with Gabriel Wright, one of the authors of the Rodriguez et al paper [1].

Version 1.0 Page 2



Graph Based Genetic Algorithms

For our graphs, we employed two classes of graphs: ones with a variable node size, and one with
a fixed number of nodes. In the fixed class, we employed the dodecahedral graph which emulates
a dodecahedron [9], as well as the Desaugres graph, which has 20 nodes, each having 3 edges [5].

In the other class, the variable node size, we had five different types. The first was a complete
graph where each node connects to every other node [4]. The second type was a 2D grid or lattice
graph; each node had on average 4 neighbors, with the exception of the edge nodes [8]. The third
type was a Caveman graph which is N clusters of K-Cliques [3]. The fourth type was a Windmill
graph, a graph with N clusters of K-Cliques and where each node is connected to a single, central
node [11]. The fifth type was an Erdos-Renyi graph, where each node’s edge to every other node
has an p chance of existing [6].

1.4 Graph Based Genetic Algorithms-A Key Graph Kernel

When we apply graphs to isolate the breeding pairs of each potential solution, we perform a sort
of graph “kernel” by traversing the graph to each of the neighbors from every node. The rough
psudeo-code looks something like 1. For each vertex in the graph, breed it with every neighbor
that it has. Of all these children, the most fit one will replace it after breeding has finished. Thus,
in every round, only the most fit specimens remain.

The evaluation of this would be to test this algorithm on different graphs, measuring for speed
and best solution score.

Algorithm 1 Graph Based Breeding:
G, V, E

1: procedure breed(G, V, E)
2: R = {}
3: for v in V do
4: N = Neighbors(v)
5: for n in N do
6: C = children(n, v)
7: for c in C do
8: if fitness(c) < fitness(v) then
9: R+ = (c, v)

10: end for
11: end for
12: end for
13: for r in R do
14: replace(G, r[1], r[0])

15: end for

In our kernel, we define breeding as the process of combining different parts of two solutions
together to obtain many different “children” solutions, each equally valid solutions. In our case of
using this process to find a homogeneous DNA sequence in our target species that is most similar
to the given DNA sequence in our reference species. Our solution is represented by a list of codons.
Thus each node has a single solution, or list of codons. Children are bred by traveling down the list
of both parent solutions, and choosing to take the codon from one of the parents for that position
in the list. In our implementations, we only breed 10 kids. The first two are chosen by splitting
the parents in half and mixing and matching these halves, forming two children. The second two

Version 1.0 Page 3



Graph Based Genetic Algorithms

trade off ever other parent’s codon. This is done effectively twice. The fourth two do the same,
but switch every 3rd item. The fifth two do the same, but every 10th item.

Our fitness function is a modified version of the minmax function from the work done by Ro-
driguez et.al [1]. This function gives a score to each codon in the DNA sequence. Our fitness
function adds up the difference in the score of the reference DNA sequence and our solution se-
quence, with a scaling factor for easier readability of the score.

As the kernel is a single round of a genetic algorithm, we perform it 50 times, starting at the
3rd line in the psudo-code.

An assumption of the replace function is that no duplicate solutions will be placed into the graph.
If the replaced solution is already on a different node, then the replacement doesn’t happen.

1.5 Prior and Related Work

Much of this chapter will be applying the work done by Ashlock et al. in their 1999 paper ”Graph
Based Genetic Algorithms”, where they took different kinds of graphs and applied them to three
genetic algorithms problems. They explored the time it took to solve different genetic algorithm
problems using many different kinds of graphs. This paper focuses on taking that idea and applying
it to the specific problem of bioharmonization.

1.6 A Sequential Algorithm

The Kernel proposed above, if taken to be sequential, would have a rather complex execution time,
dependent on the execution time of each of the underlying functions, specifically children and
fitness. In the worst case scenario, a fully connected graph, the execution time is O(V 2SC) where
V is the number of vertices in the graph, S is the size of a given solution, and C is the number of
children produced by children. In our specific case, this became O(V 2S) as the number of children
generated for each breeding pair was always 10. The pseudo-polynomial nature of the solution is
the power of the genetic algorithm, as a good chunk of the solution space is evaluated, but done in
an algorithmic manner.

1.7 A Reference Sequential Implementation

Evaluation of this approach was done in Python3, ran using PyPy3 to speed up execution. Our
graphs were then generated in NetworkX.

1.8 Sequential Scaling Results

Using a DNA sequence of 155 Codons for a protein in E.coli, we harmonized it in C. elegans, M.
musculus, H. sapien, and S. cerevisiae. In our variable node sized graphs, we did a round using
20 nodes, and another with 40 nodes. In our resulting tables, both a lower time and a lower score
is better. We tested on a desktop with an Intel Core i7-5960X@3GHz with 16 logical cores, and
32GB of memory on Windows 10, using WSL Ubuntu 14.04.5 LTS. For every test, we ran it 10
times, taking the standard deviation and mean of the results.

As can be seen in section 1.14, the general trend is spending more time running the genetic
algorithm, the better the solution. But the results are diminishing returns. For example, in the
fully connected case of S. cerevisiae, we get a score of 19127 using 20 nodes, taking 1106s to run.

Version 1.0 Page 4



Graph Based Genetic Algorithms

Bumping that up to 40 nodes, we only get a score of 17748, but it takes 4 times as long with 4408s.
Using a shorter running example, using only 20 nodes with 50% chance, the Erdos Renyi graph
had a mean runtime of 525s and an average score of 19755, which is hardly worse than the fully
connected graph, yet only takes half the runtime. The graphs themselves only limit the possible
mating pairs. While this decreases the runtime, often by an order of magnitude when choosing
a different graph than a fully connected one, the scores are substantially worse. While the mean
score of the fully connected graph is often within 1.5 standard deviations of the other graph types,
the reverse is not true.

Most of the tests were undertaken with the pattern of each solution breeding with every partner
it could. There are other breeding patterns, such as breeding only with the best partner, or breeding
with a random partner. Doing a round of tests using this last pattern, choosing a random partner
from the list of available ones, using 40 nodes. Again, here we find that choice of graph had very
little impact on either the solution or the runtime. They all ran in roughly the same amount of
time and achieved roughly the same score.

1.9 A Parallel Algorithm

1.10 A Reference Parallel Implementation

Discuss here an implementation of the basic parallel code. Include what language/paradigm you
used for the code.

1.11 Parallel Scaling Results

Discuss here results from parallel algorithm. Include software and hardware configuration, where
the input graph data sets came from, and how input data set characteristics were varied. Ideally
plots of performance vs BOTH problem size changes AND hardware resources are desired. Did the
performance as a function of size vary as you predicted?

1.12 Conclusion

Summarize your paper. Discuss possible future work and/or other options that may make sense.

1.13 Response to Reviews

Second Iteration:
In one review, the reviewer pointed out how there were no graphs mentioned in data set, nor

where the data is coming from. That was addressed. The reviewer also commented that breeding
and fitness functions were a bit unclear, so that was expanded upon, as well as saying when the
overall algorithm ends. I cleared up that this project is applying an idea from an earlier paper to
a specific problem, as that was another complaint by the first reviewer. Some bugs were fixed in
the pseudo code, as pointed out by the reviewer, and a clarification of uniqueness of solution in the
replacement. I also made a small change to 1.2 updating that each solution was placed at a node.
I expand on what this means in section 1.4.

The second reviewer had similar complaints, and thus are also addressed.

Version 1.0 Page 5



Graph Based Genetic Algorithms

1.14 Sequential Scaling Results - Results

Fully Connected - 20 Nodes

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 1106.064027 84.105426 19126.919 1283.620401

H. sapien 1025.578735 02.427339 24928.944 1606.4

M. musculus 1020.771278 02.082315 21137.479 2176.747175

C. elegans 1041.69969 00.767798 23789.236 1482.189131

2D Grid - 20 Nodes

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 112.497632 0.603611 25786.073 2065.608277

H. sapien 108.761492 0.569377 28664.414 2154.667222

M. musculus 107.421994 0.119317 26082.867 2162.381269

C. elegans 110.420743 0.108324 26082.867 1815.084957

Windmill Graph - 4,5

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 223.842559 1.001441 23436.453 2572.074629

H. sapien 215.994595 0.466179 28287.147 1813.922553

M. musculus 216.386268 1.20397 24182.217 1931.304768

C. elegans 224.740323 1.584885 27756.876 2479.184106

Version 1.0 Page 6



Graph Based Genetic Algorithms

Caveman Graph - 4,5

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 223.976335 2.085542 25257.561 2122.087532

H. sapien 217.215015 0.891218 30374.471 1695.429033

M. musculus 220.781013 0.234819 26713.461 1856.30301

C. elegans 223.300958 0.234594 28866.525 1547.000103

Erdos-Renyi - 20,0.5

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 525.188143 34.916041 19755.386 1891.456603

H. sapien 510.376475 34.632428 26097.224 1983.388064

M. musculus 525.785302 57.888515 21797.674 1586.296764

C. elegans 602.725836 68.400198 25190.05 1644.452654

Desargues

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 169.624232 0.762033 22348.231 1677.688622

H. sapien 177.160388 0.500322 27590.251 2675.609935

M. musculus 164.078059 0.545794 24807.326 2002.273596

C. elegans 167.43908 0.325993 27069.238 2175.457151

Fully Connected - 40

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 4407.949818 180.660595 17747.837 1073.674007

H. sapien 4166.038358 030.571147 22628.39 1405.021405

M. musculus 4203.88681 108.770135 19826.178 2073.063743

C. elegans 4295.030674 046.220033 20571.038 1319.340475

2D-Grid - 40

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 444.243351 24.377109 21019.449 2326.198972

H. sapien 391.372798 33.135986 23924.596 1550.27023

M. musculus 373.068643 00.282972 23104.234 1864.526685

C. elegans 373.068643 00.593986 24259.694 1947.400487

Windmill - 4,10

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 0981.594376 6.547543 19369.346 2047.492682

H. sapien 0961.863631 2.460456 24557.848 2047.492682

M. musculus 0977.074179 0.66965 21314.179 2339.926058

C. elegans 1003.081456 4.429312 23416.692 2092.55662

Version 1.0 Page 7



Graph Based Genetic Algorithms

Caveman - 4,10

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 1164.003078 122.147287 20447.382 1357.424586

H. sapien 0997.866954 000.791199 25169.657 0849.044711

M. musculus 0984.32995 001.111364 21371.185 1739.21804

C. elegans 1010.327206 000.632495 24271.767 1496.809353

Erdos-Renyi - 40,0.1

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 454.887323 48.710071 20182.799 1593.168119

H. sapien 421.002154 31.075691 25366.729 2271.80358

M. musculus 418.624505 44.980772 21653.777 1181.243829

C. elegans 432.977019 33.668121 24098.38 2721.854925

Random Mate- Fully Connected - 40

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 112.914445 0.692567 25491.094 2011.471445

H. sapien 109.614343 0.530169 27581.154 1917.922058

M. musculus 109.074456 0.139277 25906.26 2120.395358

C. elegans 111.604002 0.19365 28398.73 1873.491964

Random Mate- 2D Grid - 40

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 117.153094 0.237125 25994.986 1969.151356

H. sapien 112.069839 0.209047 27425.349 1155.710915

M. musculus 113.049799 0.12099 26199.627 1720.679499

C. elegans 116.833984 0.141174 29231.478 2798.136781

Random Mate- Windmill Graph - 4,5

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 105.765696 0.399097 25199.198 2081.407954

H. sapien 104.575735 0.573102 27805.829 1347.823895

M. musculus 105.645179 0.501267 25258.195 1135.440949

C. elegans 108.486528 0.629473 29777.532 2081.029823

Random Mate- Caveman Graph - 4,10

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 114.436177 0.55969 25539.219 1705.047569

H. sapien 111.138927 1.669333 29753.6 2519.051726

M. musculus 108.949419 0.258024 26960.741 1125.010804

C. elegans 112.650083 0.096759 28374.057 1614.289676

Version 1.0 Page 8



Graph Based Genetic Algorithms

Random Mate- Erdos Renyi - 40,0.1

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 110.97712 2.371762 27572.692 1414.054499

H. sapien 107.17137 2.95958 28022.321 1545.729126

M. musculus 109.823711 2.074018 26623.335 2014.636918

C. elegans 112.247242 2.680797 28052.558 2186.395163

Version 1.0 Page 9



Bibliography

[1] Scott Emrich Patricia L. Clark Anabel Rodriguez, Gabriel Wright. %minmax: A versatile
tool for calculating and comparing synonymous codon usage and its impact on protein folding.
Protein Science, 1(27):356–362, 2018.

[2] Thomas F. Clarke, IV and Patricia L. Clark. Rare codons cluster. PLOS ONE, 3(10):1–5, 10
2008.

[3] Eric W Weisstein. Caveman graph – from MathWorld–a Wolfram Web Resource.

[4] Wikipedia contributors. Complete graph — Wikipedia, the free encyclopedia, 2018. [Online;
accessed 20-November-2018].

[5] Wikipedia contributors. Desargues graph — Wikipedia, the free encyclopedia, 2018. [Online;
accessed 20-November-2018].

[6] Wikipedia contributors. Erdsrnyi model — Wikipedia, the free encyclopedia, 2018. [Online;
accessed 20-November-2018].

[7] Wikipedia contributors. Genetic code — Wikipedia, the free encyclopedia, 2018. [Online;
accessed 14-September-2018].

[8] Wikipedia contributors. Lattice graph — Wikipedia, the free encyclopedia, 2018. [Online;
accessed 20-November-2018].

[9] Wikipedia contributors. Regular dodecahedron — Wikipedia, the free encyclopedia, 2018.
[Online; accessed 20-November-2018].

[10] Wikipedia contributors. Travelling salesman problem — Wikipedia, the free encyclopedia,
2018. [Online; accessed 14-September-2018].

[11] Wikipedia contributors. Windmill graph — Wikipedia, the free encyclopedia, 2018. [Online;
accessed 20-November-2018].

10


