
Chapter 1

Bipartite Matching

Contributed by Brian Page

1.1 Introduction

Graph matching seeks to determine a set of edges within the graph such that there are no vertices
in common among the edges selected [6]. As its name implies, bipartite matching is a matching
performed on a bipartite graph [2] in which the vertices of said graph can be divided into two
disjoint sets.

Bipartite matching has many real world applications, many of which resemble some form of
assignment or grouping [1]. One such example would be that of job positions vs job applicants.
Each applicant has a subset of jobs they have applied for, yet each position can filled by at most
one applicant. A matching of this graph would be performed in an attempt to find the maximum
number of applicants that can be placed into the job openings. This of course is but one example
of bipartite matching.

Bipartite matching while useful in its own right, is often used as an intermediate algorithm
to prepare data for subsequent computation. Because of this, efficient computation of bipartite
matching has become an interesting topic among High Performance Computing (HPC) researchers
as scalability and performance continue to increase in importance.

1.2 The Problem as a Graph

Before we can dive into bipartite matching, we must first understand the different types of graph
matching [6]. Considering a general graph G = (V,E) where V is the set of vertices and E the set
of all edges a vertex is considered to have been matched when an edge has the vertex as one its
endpoints.

An notional attempt at matching can quickly generate a Maximal matching. A Maximal match-
ing is a matching M where the addition of any edge in the bipartite graph G would make M no
longer a valid bipartite matching. This occurs when an edge is added, that has had at least one it
its vertices matched previously. Fig. 1.1 illustrates three example graphs, and their corresponding
maximal matching. Please note that the graphs in Fig. 1.1 are not necessarily bipartite graphs and
present maximal matching for generalized graphs.

1



Bipartite Matching

Figure 1.1: Maximal Matching
Here we see three general graphs G(V,E) as well as one possible maximal matching for each.

Black lines represent edges, while bold red lines indicate an edges selected as the maximal
matching for given graph. The red edges comprise the maximal matchings for each graph since to

add any other edge would require adding an edge with a vertex already matched to edge in the
matching.

Subsequently the Maximum Matching, aslo known as Maximum Cardinality Matching (MCM),
of a bipartite graph is a matching consisting of the largest possible independent edge set or total
edge weight. It is important to illustrate that all maximum matchings are maximal matching,
however since maximum matchings contain the largest cardinality edge set for a matching on the
graph G, not all maximal matchings are the maximum for G. This is an important distinction as
the calculation of a valid maximum matching can and often is much more difficult to obtain.

For comparison Fig. 1.2 illustrates the maximum matching for the same graphs seen in Fig.
1.1. Fig. 1.2c has at least two possible solutions for its maximal matching. Matchings, both
maximal and maximum, can have multiple solutions depending on a graph’s structure. This does
not mean that unique maximum matchings are not obtainable, instead it indicates that either a
graphs structure must be such that this situation exists, or an additional constraint must be present
to limit edge selection.

Figure 1.2: Maximum Matching
Here we see three general graphs G(V,E) as well as one possible maximum matching for each.

Black lines represent edges, while bold red lines indicate an edges in the maximum matching for
given graph. Note that for (a) 3 possible matchings exists which are maximal, (b) has only one

maximum matching, while (c) can have 2 maximum matchings.

One important thing to observe is that each maximum matching is a maximal matching, however
not all maximal matching are the maximum matching for a particular graph. This can be seen
in Fig. 1.2 where for graphs (a) and (b) the maximum matching is different from the maximal
matching shown in Fig. 1.1. Additionally we see that for graph (c) the previous maximal matching
is in fact the maximum matching.

There are other forms of matching that can be discussed, however the most widely used is that
of determining the maximum matching of a graph and is the focus of this topic.

One of the most common methods for solving bipartite matching is to treat the graph G =
(V,E) = ((u, v), E) as a flow network, as seen in Fig. 1.3, in which a connection or edge between
vertices u and v may or may not be selected in the final matching. The Ford-Fulkerson algorithm
determines the maximum flow through just such a graph/network and in the case of bipartite

Version 2.0 Page 2



Bipartite Matching

matching, is used to determine the maximum matching on G. Ford-Fulkerson [4] works by adding
and removing edges while checking the matching with the changed edge state (included or excluded)
until it has determined the optimal edge set or matching.

There are of course other methods such as Hopcroft-Karp which performs a localized randomiza-
tion of edge inclusion/exclusion, as well as the well known Bellman-Ford algorithm. This method
achieves an improved time complexity of O(‖E‖log‖V ‖) in the average case thanks to the high
probability that all non-optimal matching have augmenting paths [5, 9].

Figure 1.3: Graph conversion to a flow network for the purpose of determining its maximum
matching.

1.3 Some Realistic Data Sets

A bipartite graph can and often is represented as sparse matrix, therefore there are many sources of
bipartite graphs in existence today. The Suite Sparse Matrix Collection [8] contains many real world
data sets for different research areas such as fluid dynamics and circuit problems. The matrices
have varying characteristics such as row count and total non-zeros ranging from as few as 20 rows
with 90 non-zeros to millions of rows with hundreds of millions of non-zeros.

Another source for real world data is the Stanford Large Network Dataset Collection (SNAP)
[7] which hosts many large graphs for social media and web based networks.

Lastly there are many tools which are used for the generation of synthetic bipartite graphs.
Using such tools, a researcher can create graphs in which they have control over structural charac-
teristics.

1.4 Bipartite Matching-A Key Graph Kernel

We will discuss a generalized version of the augmenting path algorithm which lies at the heart
of many maximum flow algorithms often used for bipartite matching [4, 5, 9]. Augmenting paths
ensures the determination of a solution, however in the case of Ford-Fulkerson does not always
provide the optimal solution [3].

Algorithm 1 provides a brief implementation for augmenting paths within a flow network. Start-
ing with an bipartite graph G and the current matching M we evaluate edges not currently apart

Version 2.0 Page 3



Bipartite Matching

Algorithm 1 Augmenting Path
P is a path from v to u
α,β are edges (u,v)
A is a augmenting path being evaluated

1: procedure Graph G((u, v),E), Matching M
2: for i in M do
3: if Mi(u)− > G(v) then //if another path exists to u
4: α = Mi // save current u − > v path
5: for j in E where E(Mi(u), j) do // find any other paths from v to Mi(u)
6: β[] = E(Mi(u), j) // find the new paths
7: for k in β do // for all edges discovered
8: A = β[k]
9: if (M - β[k]+!A) > M then // if swapping paths increases flow

10: M [i] =!A // save augmenting path changes

11: end for
12: end for
13: end for

of the M in order to see if accommodating this new edge and making any required path adjust-
ments will increase M. To do this, we evaluate an edge associated with Mi(u) and find the Mi(v)
associated with the edge. From here we need find alternative edges (paths) from v to u such that
the rules for bipartite matching are satisfied. This means that we trace back from u back to v,
and then forward through an alternative path back to u. If such a set edges exist and adding it
will increase M, we invert the edges contained in this ”discovery” period are flipped. This means
that edges that were contained in M are removed, and edges not previously in M are added. This
process is repeated until no more edges can be added which will increase M, leaving the maximum
M of G.

Hopcroft-Karp and Ford-Fulkerson both implement augmenting paths to perform a similar
portion of their flow discovery. Hopcroft-Karp fior example is based on the push and relabel
method for finding maximum flow in which a bipartite graph is given as input. The algorithm
then uses breadth first search (BFS) in order to partition the vertices into two sets matched and
unmatched. Edges are then swapped in and out of the matching, with the resulting matching M
evaluated against the highest matching achieved thus far.

One key difference between hopcroftt-karp and ford-fulkerson is its use of localized path aug-
mentations where an edge incident to the current vertex can be included or excluded without
determining the entire path across G. The results in an overall time complexity of O(‖E‖

√
‖V ‖).

Overall, the exact time complexity of determining the maximum matching on a bipartite graph
depends on the precise implementation chosen, however The complexity of the Hopcroft-Karp al-
gorithm exhibits good time complexity in the general case [5, 9].

1.5 A Sequential Algorithm

Discuss here the outlines of a sequential algorithm. What programming paradigms might make the
most sense? What are the key data structures? Does the computational complexity differ from
that in the Section 1.4?

The initial sequential algorithm we will discuss utilizes the Hopcroft-Karp algorithm. Assuming

Version 2.0 Page 4



Bipartite Matching

that an arbitrary bipartite graph has been loaded and stored in the appropriate manner, compu-
tation performs Hopcroft-Karp which makes a call to breadth first search. The resulting frontier
is used to investigate the initial potential mapping, which is selected based on weight of ”flow” of
the edges. Once this initial mapping is determined, a check for augmenting paths is performed and
the matching process is performed continuously until no augmenting paths exist. The resulting
matching is the maximum cardinality matching for the graph used.

1.6 A Reference Sequential Implementation

One possible implementation of maximum cardinality (MCM) bipartite matching utilizes the gener-
ation of a flow network and run a common maximal flow algorithm. There are of course much more
complex methods to determine the MCM of a graph however flow networks are the traditional and
easy to comprehend method of doing go. Because of this, the following sequential implementation
is based on the generation of a flow network from our input bipartite graph, and then running the
a Hopcroft-Karp maximum flow solver.

We have developed our sequential implementation using C++. Solver loads the bipartite graph
from file and populates vertex and edge vectors. The matrices we have used represent graphs in
the form of sparse adjacency matrices. This means that each non-zero element within the matrix
is an edge between the vertices represented by the non-zero’s row and column ids.

Once the matrix is read and stored as a bipartite graph, we begin traversing the graph from an
initial vertex. In the case of this implementation the initial vertex is chosen to b vertex 0 in the set
of vertices u or v with the largest cardinality. The reason for this is that the set of vertices with the
least cardinality is often responsible for limiting the MCM within a bipartite graph. This occurs
because the total number of possible matches is only as large as the smallest vertex set within the
graph.

The sequential implementation evaluated uses an instance of the Hopcroft-Karp algorithm to
evaluate matchings and perform augmenting path updates until an MCM is found for the graph.
Fig. 1.4 includes the C++ code which performs the push and relabel operations for vertices and
edges as augmenting paths are found and the current matching is updated. It traverses the graph,
finding unmatched vertices by performing breadth first searches, then as mentioned evaluated
augmenting paths and selects those with the highest weight or flow. Once there are no additional
augmenting paths, the resulting flow is returned and represents the maximum matching for the
inputed graph.

1.7 Sequential Scaling Results

The bipartite graphs that I have tested the reference implementation with have come from the
Suite Sparse Matrix Collection [8]. Fig. 1.5 shows the time required to perform graph construction
as well as the maximum matching on the constructed graph, for each graph evaluated. As can be
seen, total time required, as well as the time required for a particular application phase, increases
as vertex count increases. However the 12month1 experiences the largest time requirement even
though it does not have the largest number of vertices.

This is because total the edges of a graph, and not just its vertices, govern how that graph
is traversed. Fig. 1.6 shows the relation between total vertex count and edge count within each
graph. When comparing these two figures, it is clearly visible that the graph with the greatest time
requirement has an edge count that is much greater than that of other graphs tested.

Version 2.0 Page 5



Bipartite Matching

Figure 1.4: Sequential Implementation: Hopcroft-Karp Subroutine

// Returns size of maximum matching

int biGraph::hopcroftKarp() {

// pairU[u] stores pair of u in matching where u

// is a vertex on left side of Bipartite Graph.

// If u doesn’t have any pair, then pairU[u] is NIL

pairU = new int[m+1];

// pairV[v] stores pair of v in matching. If v

// doesn’t have any pair, then pairU[v] is NIL

pairV = new int[n+1];

// dist[u] stores distance of left side vertices

// dist[u] is one more than dist[u’] if u is next

// to u’in augmenting path

dist = new int[m+1];

// Initialize NIL as pair of all vertices

for (int u=0; u<m; u++) {

pairU[u] = NIL;

}

for (int v=0; v<n; v++) {

pairV[v] = NIL;

}

// Initialize result

int result = 0;

// Keep updating the result while there is an

// augmenting path.

while (bfs()) {

// Find a free vertex

for (int u=1; u<=m; u++){

// If current vertex is free and there is

// an augmenting path from current vertex

if (pairU[u]==NIL && dfs(u)) {

result++;

}

}

}

return result;

}

Version 2.0 Page 6



Bipartite Matching

Figure 1.5: This chart shows the graph construction (blue) and maximum cardinality matching
(red) time for 7 bipartite graphs. The graphs were taken from the Suite Sparse Matrix Collection
and very in vertex and edge counts.

Figure 1.6: This chart shows the total number of edges the for 7 bipartite graphs evaluated.

Version 2.0 Page 7



Bipartite Matching

Edge count within a bipartite graph can have a drastic affect on MCM determination, as a
greater number of edges can generate a much greater number of augmenting paths. Additional
augmenting paths require additional computation, thereby increasing the overall runtime.

1.8 Response to Reviews

In my initial version of this paper I had made certain assumptions about the level of comprehension
for this material. Therefore I needed to go through and provide some additional explanation for
particular fundamental concepts used in bipartite matching. Furthermore, some of my material
while not necessarily in accurate, failed to convey the concept in a generalized manner. As such the
implementation psuedocode which originally gave an extremely high level view of the Hopcorft-Karp
algorithm, was replaced with that of Augmenting path on a bipartite graph.

I did my best to maintain a generalize approach to bipartite matching while introducing some of
the most common methods used. This meant that some complexity information was omitted since
the exact time complexity is highly dependant on the implementation chosen as well as individual
graph properties.

Version 2.0 Page 8



Bibliography

[1] Assignment problem. https://en.wikipedia.org/wiki/Assignment Problem.

[2] Bipartite graph. https://en.wikipedia.org/wiki/Bipartite graph.

[3] Flow networks. https://en.wikipedia.org/wiki/FlownetworkAugmenting paths.

[4] Ford-fulkerson algorithm. https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-
maximum-flow-problem/.

[5] Hopcroft-karp algorithm. https://www.geeksforgeeks.org/hopcroft-karp-algorithm-for-
maximum-matching-set-1-introduction/.

[6] Matching. https://en.wikipedia.org/wiki/Matching (graphtheory).

[7] Stanford large network dataset collection (snap). https://snap.stanford.edu/data/.

[8] Suite spare matrix collection. https://sparse.tamu.edu.

[9] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4), 1973.

9


