
Chapter 1

Modularity and Neural Networks

Contributed by Mark Horeni

1.1 Introduction

Community detection is useful unsupervised way to understand more information about a graph.
One way to do community detection is by maximizing a global property of the graph known as
modularity. Maximizing modularity has been used in a wide variety of applications with some suc-
cess in not only biological networks, but other social networks and beyond for community detection
[9] [11]. Specifically, modulairty maximization techniques have been shown to out perform other
community detection algorithms [11].
A lot is known about the human brain, but seemingly nothing is known about it. To study the
human brain scientists typically look at different, more simple examples of connections between
neurons, also known as connectomes. Mapping and knowing the functionality of connectomes is
a hard problem because someone has to look at when a stimulus is received, what neurons fire
when and where. Since these are structures of neurons, it seems like a good assumption that these
neurons would form topologically dense communities in order to send information where it needs
to go.

1.2 The Problem as a Graph

Individual neurons can be thought of as nodes, and each neuron has two types of connectors, either
gap junctions or chemical synapses.[12] Chemical synapses as seen in Figure 1.1, can have 1, 2, or
3 directed outputs to another neuron, while similarly, gap junctions can have multiple outputs, but
these outputs are undirected as the electrical flow can technically flow either way [12].

1

Louvain

Figure 1.1: A view of the neurons and their chemical synapses [3]

1.3 Some Realistic Data Sets

The c. elegans is a transparent roundworm that has had all of its neurons mapped along with all
of the connections. There are a total of 279 neurons, and between them there are around 6393
chemical synapses and 890 electrical gap junctions[3]. Each neuron has an attribute of whether the
neuron itself is either a motor, sensory, or inter neuron (or a combination of), and the distribution
of those are roughly equal across neurons [3].
The worm data is the only complete data, but there does exist partial data for other animals
including partial data from flies, cats, macaques, mice, rats, and humans. Bigger datasets to be
used in the enhanced implementation. This will include these partial datasets like the connectome
of a mouse retina, which is 1123 neurons and 577350 connections between neurons [7].

1.4 Louvain-A Key Graph Kernel

Modularity, Q, is a measure of how dense a community is compared to how dense a community is
expected to be. This is defined as the following [4]

Q =
1

2m

∑
i,j

[Aij −
kikj
2m

]δ(ci, cj)

where 2m is the weight of all edges, Aij is the weight between i and j, ki and kj are the total weights
attached to each i and j, and ci and cj are the communities. The goal is to find which combinations
of nodes when grouped into certain communities, which combination maximizes modulairty.

1.4.1 Undirected Louvain

Since the goal is to maximize modulairty, the approach of the Louvain algorithm is greedy opti-
mization. To do this, the algorithm first starts with every node in its own community [4]. Next,
each node is put into a neighboring community and the change in modularity is calculated by

∆Q = [

∑
in +ki,in
2m

− (

∑
tot +ki
2m

)2]− [

∑
in

2m
− (

∑
tot

2m
)2 − (

k + i

2m
)2]

where
∑

in are the total weights inside community C,
∑

tot is the sum of edges of the links incident
to nodes in C, ki are the sum of incident links of node i, and ki,in is the sum of weights from i in
C with m being the total sum of weights in the network [4].

Version 1.0 Page 2

Louvain

Figure 1.2: Example of the Louvain Algorithm [8]

The other half of the algorithm takes the previous phase, and turns each community into its own
node with a self loop with the weight of all the edges of all the nodes inside the community. When
this finishes, the process goes back to the first half, and the process is repeated until modularity
no longer increases between iterations. This proccess is shown visually in figure 1.2.

1.4.2 Resolution Limit

One of the problems with maximizing modulairty is that there is a problem known as the ”resolution
limit”. Since the formula for modularity is a global property and uses the strength within a
community compared to the strength between communities, in some networks the strength between
real communities may be so close to the strength between communities that modularity may be
optimized if a strong link between two communities is joined into one community [6].
A solution proposed to solve this problem is to introduce a time-scale parameter t to help stabilize
modularity giving the formula [10]

QNL(t) = (1− t) +
1

2m

∑
i,j

[Aijt−
kikj
2m

]δ(ci, cj)

1.4.3 Directed Louvain

Although modularity is usually defined for unweighted graphs, in directed graphs it can be defined
as

Qd =
1

m

∑
i,j

[Aij −
dini d

out
j

m
]δ(ci, cj)

where the only difference is that m is now the weight of all the arcs (directed edges), and din stands
for the in degree of i while doutj stands for the out degree of j [5].
Similarly, change in modularity can be defined as

∆Qd
=
dCi
m
− [

douti

∑in
tot +dini

∑out
in

m2
]

Version 1.0 Page 3

Louvain

where
∑in

tot is the sum of all in-going arcs into community C, and
∑out

tot are all the out-going arcs
out of community C [5].

1.4.4 Psuodcode

The pusdocode of the algorithm appears to run with time complexity O(n log n), because at every
step nodes are guaranteed to join a community, meaning the number of communities will decrease
every time giving it a log n appearance. Though it can be argued that the time complexity is
actually closer O(n2) because if only 1 node joins a community at a time, then the algorithm has
to run n times for n number of nodes. The psudocode is as follows [9]

Algorithm 1 Louvain

1: V : a set of vertices
2: E: a set of edges
3: W : a set of weights of edges, initialized to 1
4: G← (V,E,W)
5: repeat
6: C ← {{vi}}|vi ∈ G(V))}
7: Calculate current modularity Qcur

8: Qnew ← Qcur

9: Qold ← Qnew

10: repeat
11: for vi ∈ V do
12: Qnew ← Qcur

13: remove vi from its current community
14: Nvi ← {ck|vi ∈ G(V), vj ∈ ck, eij ∈ G(E)}
15: find cx ∈ Nvi that has max∆Q{vi},cx > 0

16: Calculate new modularity Qnew

17: until no membership change or Qnew = Qcur

18: V ′ ← {ci|c∈C}
19: E′ ← {eij |∀eij if vi ∈ Ci, vj ∈ Cj , and C 6 = Cj

20: W ′ ← {ij |
∑
wij ,∀eij if vi ∈ Ci and vj ∈ Cj}

21: until Qnew = Qold

1.5 Prior and Related Work

This is space to add in discussion of prior work - word on the same problem or kernel that your
paper assumes, and related work - work on the same application but using different approach or
kernel, or a different but similar application..

1.6 A Sequential Algorithm

The initial sequential algorithm can be simply generated by following the psudocode in section 1.4.
The implementation in the next section uses dendograms [2] for processing and NetworkX uses
hash tables [1] for the storage of graphs, although this isn’t the most efficient, it is simple and easy
to implement.

Version 1.0 Page 4

Louvain

1.7 A Reference Sequential Implementation

For my implementation, I used NetworkX (python), as there already existed a library that im-
plemented Louvain [2], but this library did not support directed graphs, so I had to change the
definition of modularity from the original

inc = dict([])

deg = dict([])

links = graph.size(weight=weight)

if links == 0:

raise ValueError("A graph without link has an undefined modularity")

for node in graph:

com = partition[node]

deg[com] = deg.get(com, 0.) + graph.degree(node, weight=weight)

for neighbor, datas in graph[node].items():

edge_weight = datas.get(weight, 1)

if partition[neighbor] == com:

if neighbor == node:

inc[com] = inc.get(com, 0.) + float(edge_weight)

else:

inc[com] = inc.get(com, 0.) + float(edge_weight) / 2.

res = 0.

for com in set(partition.values()):

res += (inc.get(com, 0.) / links) - \

(deg.get(com, 0.) / (2. * links)) ** 2

return res

to the now directed version of modularity.

inc = dict([])

deg = dict([])

links = graph.size(weight=weight)

if links == 0:

raise ValueError("A graph without link has an undefined modularity")

for node in graph:

com = partition[node]

deg[com] = deg.get(com, 0.) + graph.out_degree(node, weight=weight)

deg2[com] = deg.get(com, 0.) + graph.in_degree(node, weight=weight)

for neighbor, datas in graph[node].items():

edge_weight = datas.get(weight, 1)

if partition[neighbor] == com:

if neighbor == node:

inc[com] = inc.get(com, 0.) + float(edge_weight)

else:

inc[com] = inc.get(com, 0.) + float(edge_weight) / 2.

Version 1.0 Page 5

Louvain

res = 0.

for com in set(partition.values()):

res += (inc.get(com, 0.) / links) - \

(deg.get(com, 0.) * deg2.get(com, 0.)/ (links))

return res

The main thing that was changed that it now uses both in and out degrees, instead of just total
degree and dividing by 2.

1.8 Sequential Scaling Results

Since the worm database was small enough, this was able to run on my computer in under a second.
The parameter that was varied was t, the resolution value, explained in 1.4.2. My thought process
was that because were less communities generated, and the algorithm starts at every node being in
its own community, that would imply that it would take longer to converge to fewer communities
and that a resolution of 1 would take the longest. This is ignoring the intuition of what the time-
scaling is doing though, as t → 0, the communities are more fine-grained and more nodes are less
likely to switch communities at each time step, making the algorithm closer to worst case [10].

Figure 1.3: Runtime as resolution value decreases

1.9 An Enhanced Algorithm

Discuss here the outlines of an enhanced algorithm. This could be a parallel code, a code with some
significant heuristics, or a code written in a non-traditional programming paradigm. Pseudocode
is fine. Discuss what you think is the computational complexity.

Version 1.0 Page 6

Louvain

1.10 A Reference Enhanced Implementation

Discuss here an implementation of the enhanced algorithm. Include what language/paradigm you
used for the code.

1.11 Enhanced Scaling Results

Discuss here results from the enhanced algorithm. Include software and hardware configuration,
where the input graph data sets came from, and how input data set characteristics were varied.
Ideally plots of performance vs BOTH problem size changes AND hardware resources are desired.
Did the performance as a function of size vary as you predicted?

1.12 Conclusion

Summarize your paper. Discuss possible future work and/or other options that may make sense.

1.13 Response to Reviews

The paper before did not include enough detail in the first few sections, so more was added in terms
of motivation, along with some sprinkles of more intuition of ideas, along with a new subsection of
a topic I forgot to touch on, resolution limits, and adding to the discussion of time complexity. I
also fixed some graphical glitches where the psudocode wasn’t in the psudocode section.

Version 1.0 Page 7

Bibliography

[1] https://networkx.github.io/documentation/stable/.

[2] https://python-louvain.readthedocs.io/en/latest/.

[3] Beth Li Ju Chen Beckman. Neuronal network of c . elegans : from anatomy to behavior. 2007.

[4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, oct 2008.

[5] Nicolas Dugu and Anthony Perez. Directed louvain : maximizing modularity in directed
networks, 2015.

[6] Santo Fortunato and Marc Barthélemy. Resolution limit in community detection. Proceedings
of the National Academy of Sciences, 104(1):36–41, 2007.

[7] Moritz Helmstaedter, Kevin L. Briggman, Srinivas C. Turaga, Viren Jain, H. Sebastian Seung,
and Winfried Denk. Connectomic reconstruction of the inner plexiform layer in the mouse
retina. Nature, 500(7461):168–174, aug 2013.

[8] Yong-Hyuk Kim, Sehoon Seo, Yong-Ho Ha, Seongwon Lim, and Yourim Yoon. Two applica-
tions of clustering techniques to twitter: Community detection and issue extraction. Discrete
Dynamics in Nature and Society, 2013:1–8, 2013.

[9] Haewoon Kwak, Yoonchan Choi, Young-Ho Eom, Hawoong Jeong, and Sue Moon. Mining
communities in networks: A solution for consistency and its evaluation. pages 301–314, 01
2009.

[10] Renaud Lambiotte, Jean-Charles Delvenne, and Mauricio Barahona. Random walks, markov
processes and the multiscale modular organization of complex networks. IEEE Transactions
on Network Science and Engineering, 1(2):76–90, jul 2014.

[11] M. E. J. Newman. Modularity and community structure in networks. Proc Natl Acad Sci U S
A, 103(23):8577–8582, Jun 2006. 2388[PII].

[12] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. The structure of the nervous system
of the nematode caenorhabditis elegans. Philosophical Transactions of the Royal Society B:
Biological Sciences, 314(1165):1–340, nov 1986.

8

