
Chapter 1

Dilemmas in Extensive Form Games

Contributed by Justus Hibshman

1.1 Introduction

Ever since the introduction of classic games such as The Prisoner’s Dilemma and the Centipede
Game [4], game theorists have realized that rational play by both agents can lead to extremely
un-intuitive outcomes.

The Prisoner’s Dilemma is storied as follows: Two fellow criminals are caught and held sepa-
rately. They must independently decide whether or not to testify against the other. If they both
keep quiet, they make off with a light sentence. If one testifies and the other doesn’t, the testifier
goes free and the other is in prison an extremely long time. If both testify, they receive a moderately
long sentence. What do they do?

This game has the interesting property that no matter what one player does, the other will fare
better (get a lighter sentence) by testifying against them. Then, according to classic game theory
reasoning, they both testify against each other and get the outcome that is net worst.

In the Centipede Game (CG) (Fig: 1.1), players take turns deciding whether or not to stop or
continue the game. When the game is stopped, both players arrive at some “outcome.” The longer
the game goes, the more the players prefer the outcomes, but the game is set up in such a way
that players always prefer the outcome they could stop and cause over the next one. The game
always has a final round, in which the last player may choose between two outcomes. We represent
preferences with numbers. The more an outcome is preferred the higher the number.

These conclusions follow directly from the following assumptions:

1. All players are rational.

2. All players act so as to reach outcomes they prefer.

Figure 1.1: A Centipede Game (preference numbers are for players 1 and 2 respectively)
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3. Items 1 and 2 are “Common Knowledge.” Informally, something is common knowledge if “All
know X. All know all know X. All know all know all know X. etc.”

When these assumptions are applied to the CG, a strange but very straightforward “backward
induction” applies: If the game gets to the last round, the player whose turn it is, operating
solely according to their preferences and having complete reign over the outcome, will choose the
outcome more favorable for themselves. Thus, the other player can conclude this, and if the game
ever reaches the second-to-last round, they will know to end it there. This chain of reasoning follows
all the way until the first round, telling the starting player to end the game right away.

In 1995 Aumann proved that given the assumptions of rationality and common knowledge
backward induction is the inevitable result for all extensive form games [1]. His work uses an
intuitive and widely-accepted definition of “rational.” In another work he proved that backward
induction holds in the CG even with a weaker definition of rationality [2].

These conclusions are unavoidable (and perhaps fascinating) facts. Furthermore, they present
a potentially serious concern to anyone who intends to act or create agents which act strictly
according to a set of preferences.

Indeed, some have proposed new “solution concepts,” such as “Iterated Regret Minimization”
[3] wherein players no longer act strictly according to their basic preferences but rather attempt to
minimize a mathematical notion of possible regret. (Note: This particular solution concept leads
to more intuitively “correct” behavior but has an “epistemic” flaw. The authors note this flaw but
then rebutt it with an argument which fails to be compatible with the idea behind the “iterated”
component of their solution concept. In short: the “Regret Minimization” component assumes
uncertainty about the other player’s strategy; the “Iterated” component assumes the other player
is also using Iterated Regret Minimization.)

As far as this author is aware, no studies have been done on how likely a dilemma-like situation
such as the centipede game is to occur “in the wild.” This paper contains some simple simulations
as a step towards answering that question.

Define a Dilemma to be a game in which, if all players act strictly according to their preferences,
are rational, and these facts are common knowledge, then an outcome is reached which is strictly
less preferred by all players than some other outcome in the game.

1.2 The Problem as a Graph

While the notions of dilemmas can be applied to all games, I will be looking at how they apply to
extensive form games. Extensive form games are those where players take turns making decisions
until an outcome is reached. They can be represented with tree structures.

In the simplest version of extensive form games, there are two kinds of nodes - decision (internal)
and terminal (leaf). Gameplay consists of players selecting a path down the tree to a leaf node.
Decision nodes are labeled with a player; that player gets to choose which of that node’s children to
travel to. Terminal nodes represent final outcomes and are labeled with preferences of all players.

1.3 Some Realistic Data Sets

Currently I am not aware of any data sets. Analysis of these games is generally of the theory, or of
gameplay by AI or humans on choice games. Thus, I wrote code to generate games randomly.

The generator can generate two kinds of games: “balanced” and “chain”. Balanced games are
simply balanced trees. The code can vary the trees in number of players, number of nodes, and the
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degree of the nodes. Chain games have a structure just like the Centipede Game; the only difference
is the arrangement of preferences. In both kinds of games, the generator creates a distinct random
ordering of preferences over the outcomes for each player.

1.4 DIL-A Key Graph Kernel

To check to see whether or not a generated game is a dilemma, I will perform the backward induction
computation to obtain the game’s result and then compare this result to other outcomes to make
sure there’s no other outcome which all players prefer.

Depth first search is a good vehicle for the backward induction logic, because it explores all
subgraphs rooted at a node before completely finishing with that node.

1. Def DepthFirstSearch(node)

2. If self.visited

3. // Perhaps do something

4. Return

5. self.visited = True

6. // Perhaps do something else

7. For neighbor in self.neighbors

8. DepthFirstSearch(neighbor)

Depth first search is O(|V |+ |E|). In the case of trees, this is simply O(|V |) since |E| = |V |−1.

1.5 Prior and Related Work

Much work has been done to run depth first search efficiently. I simply piggy-back on this research
to analyze large games. Specifically, I make use of the open source Boost Graph Library for C++
[5].

As mentioned before, I am not aware of any work to explore how often dilemmas surface in
random games.

1.6 A Sequential Algorithm

When depth-first search is run on trees, there is no need to actually check for whether or not a node
has been visited before, since all nodes can be reached by exactly one path. This can potentially
simplify an algorithm, though I shall still build my backward induction on an existing depth first
search system. Some pseudocode for backward induction is shown below:

1. Def BackwardInductionOutcome(root)

2. If(root.children.size() == 0)

3. Return root.preferences

4. best_outcome = -inf

5. result = Null

6. For child in root.children

7. child_result = BackwardInductionOutcome(child)

8. If child_result[root.player_id] > best_outcome

9. best_outcome = child_result[root.player_id]
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10. result = child_result

11. Return result

1.7 A Reference Sequential Implementation

For backward induction, the main difference between my actual code and the algorithm outlined
in the pseudocode in 1.6 is that the actual code is not recursive. Instead, it uses the Boost Graph
Library’s iterative depth first search implementation. Boost allows the user to register functions
which get called at various events, such as the first time a vertex is visited or the last time an edge
is crossed.

Some C++ which corresponds to my event handler is shown below. In English, it does the
following: Whenever a vertex has the results (values) from the backward induction, it compares
those with the results the parent currently has registered. If the parent prefers the results from the
finishing child vertex, set the parent’s result to be the same as the child’s.

1. void finish_vertex (const Vertex &v, const basicGameGraph &g) {

2. gameGraphView view(&g);

3. if (view.properties(v).id != 0) {

4. const auto &selfProperties = view.properties(v);

5. const auto &parentProperties =

6. view.properties(selfProperties.parentId);

7. const auto &parentPreferences =

8. (*values)[parentProperties.playerId];

9. if (parentPreferences[selfProperties.id] >

10. parentPreferences[parentProperties.id]) {

11. for (unsigned int i = 0; i < values->size(); i++) {

12. (*values)[i][parentProperties.id] =

13. (*values)[i][selfProperties.id];

14. }

15. }

16. }

17. }

[Note: I realized when writing this that my code has a bug in it effectively causing every non-leaf
vertex to have one extra child leaf. I will re-run the computation for my final results.]

The creation of “random” games worked as follows: First, generate a tree structure - either
balanced trees or “chain” trees (“chain” trees have the same structure as the centipede game.).
Then, for each player, assign a strict ordering of preferences over the leaf nodes. The ordering is
random (uses C++’s std::shuffle()) so players’ preferences are uncorrelated.

1.8 Sequential Scaling Results

The sequential code on a lab’s research machine. Thus it had plenty of memory available to it.
However, since it was sequential, it made use of just one core.

Many different parametrizations were tested:
|V | = 10, 100, 1, 000, 10, 000, 100, 000, 1, 000, 000
|Players| = 2, 3, 4, 5
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Figure 1.2:

“Chain” Tree or Balanced Tree
If balanced, vary degree: 2, 4, 8, 16, 32.

For every one of these parameter combinations I ran 1,000 tests and counted the fraction where
an optimal outcome was reached (i.e. the fraction of games which were not dilemmas).

Runtime scaled linearly in both the number of nodes in a tree and the number of players.
See figure 1.8 for runtime scaling with game size and figure 1.8 for runtime scaling with number of
players. [Note to Dr. Kogge: I don’t know why these figure references are all generating
1.8. Please look at the latex source.]

Figures 1.8, 1.8, 1.8, and 1.8 show the fraction of non-dilemma balanced tree games as a
function of game size, degree, and number of players. Note that as the game size increases, the
fraction of dilemmas comes to be around 3

10 games.
Lastly, figure 1.8 shows the fraction of non-dilemma chain tree games as a function of game size

and player number. Note that as the game size increases the fraction of games that are dilemmas
approaches 1.
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Figure 1.3:

Figure 1.4:
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Figure 1.5:

Figure 1.6:
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Figure 1.7:

Figure 1.8:
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1.9 An Enhanced Algorithm

1.10 A Reference Enhanced Implementation

1.11 Enhanced Scaling Results

1.12 Conclusion

1.13 Response to Reviews

Some things I learned from the first round of reviews:
I learned that my original section had formulas which were not explained well enough. Also,

my explanation of the idea of common knowledge was self-referential (I didn’t know the actual idea
yet). I used the phrase “extensive form game” without ever explaining what one is.

I also was told that I was too informal. I took some of the most informal content away but
think I might still be too informal. I’m curious to see.

Dr. Kogge wanted an example. I have not provided one because I removed or replaced a lot of
the former complex stuff where an example would have been most useful. I am also curious to see
if the current version is ok without an example (other than the example of the Centipede Game to
illustrate a dilemma).
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