Chapter 1

Fraud Detection - Dense Subgraph
Detection

Contributed by Tong Zhao

1.1 Introduction

Fraud behaviors can be spotted everywhere on online applications such as social networks where the
behavior data can be represented as large bipartite graphs which consist of links between followers
and followees. Detecting the fraudsters such as bot followers tend to be an unsupervised problem
as the size of such social network graphs are huge and labeling even a small portion of the graph
will take too much human effort. Luckily, fraudulent actions such as fake followers usually result
with creating subgraphs with unexpected high density. For example, as a large number of follower
buyers buy followers from one major follower seller, these follower buyers together with the bot
followers controlled by the seller will form a subgraph with high density. Therefore, many existing
detection methods [17, 29, 27] estimate the suspiciousness of users by identifying whether they are
within a dense subgraph.

1.2 The Problem as a Graph

Here we define the definitions of density for graphs according to [6, 14, 20].
Let G = (V, E) be a undirected graph with vertices V' and edges E C V x V. E(V) stands for the
set of edges induced by V', that is

EV)={@G,jeE:ieV,jeV}
Then the density of subgraph induced by S C V can be defined as

[E(S)]
d(S) = —=—
S|
Note that 2d(.S) is actually the average degreee of the subgraph induced by S. The Densest Subgraph
problem can be defined as

DS(G) = max{d(S)}
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For directed graphs. Let G = (V, E) be a directed graph with vertices V and edges E C V x V.
E(S,T) stands for the set of edges from vertices in S C V' to vertices in 7' C V, that is

ES,T)={(,j)e E:ieS,jeT}
Then the density of subgraph induced by S, T C V can be defined as

[E(S,T)]
VISITI

The Densest Subgraph problem can be defined as

(S, T) =

DS(G) = s{rjl%}%/{d(s, T)}

1.3 Some Realistic Data Sets

The data sets that this application encounter can come from social networks (botnet followers.)
Thus the graph size can be huge. For example, the Twitter follower-followee data set used in Fraudar
[17] contains 41.7 million nodes with 1.47 billion edges. Similar data sets for social networks such
as Twitter can be found on SNAP [23] or other platforms. It is intuitive that the size of graphs for
such problem in real industry will be growing continuously. Hence it is important for the algorithms
to have a linear or near linear run-time or be able to parallelize.

1.4 Dense Subgraph Detection-A Key Graph Kernel

Multiple algorithms exists for detecting the dense subgraphs. One commonly used algorithm is pro-
posed by Charikar in 2000 [6], which is an approximation algorithm by greedy approach. Although
Charikar’s algorithm sacrificed quality of the result subgraph for much better time complexity,
this algorithm still has a provable 2-approximation guarantee [21]. That is, if the densest existing
subgraph S’ has edge density of d(S’) = ), the result subgraph S of Charikar’s algorithm will have
edge density of d(S) > \/2.

The greedy idea of Charikar’s algorithm is to remove the vertex that is least likely in the
densest subgraph at each step according to certain rule. In the case of undirected graph, the
rule can obviously be to remove the vertex with lowest degree. Then Charikar’s algorithm can be
described as following [6].

1: procedure DENSEST-SUBGRAPH(G)
2: Input: Undirected graph G = (V, E).
Output: Dense sugraph S of G.
n <« |V]|
G, +— G
for k < n down to 1 do
v <— the vertex with smallest degree in G
Delete all edges incident on v.
Delete all vertices with 0 degree.
10: Gj_1 < the remaining of graph Gy

11: return The subgraph with maximum density amoung G, Go,...,G,.
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A detailed proof for this algorithm to achieve a 2-approximation can be found in [21].

For directed graphs, Khuller and Saha proposed a approximation algorithm based on Charikar’s
algorithm in 2009 [21] that ultilized the same greedy idea. The key point of this algorithm for
directed graphs is to first duplicate all the vertices and construct a bipartite graph such that one
copy of the vertices have only outgoing edges and the other copy of the vertices have only incoming
edges. Then the algorithm can be described as following. [21]

1: procedure DENSEST-SUBGRAPH-DIRECTED(G)
2: Input: Directed graph G = (V, E).

3: Output: Dense sugraph S of G.

4: n <« |V|

5: Gzn «~— G

6: for k£ < 2n down to 1 do

7 v < the vertex with smallest degree in Gy

8: if v has outgoing edges then

9: Delete all the outgoing edges incident on v.
10: else

11: Delete all the incoming edges incident on v.
12: Delete all vertices with 0 degree.

13: Gj—1 < the remaining of graph Gy

14: return The subgraph with maximum density amoung G1,Go, ..., Goy,.

A detailed proof for this algorithm to achieve a 2-approximation can also be found in [21].

Both algorithms has time complexity of O(|V|log|V|) and space complexity of O(|V|?|E|). To
evaluate the performance of these two algorithms, both density on the result subgraph and runtime
can be used.

1.5 Prior and Related Work

1.5.1 Dense Subgraph Problem

The history for Dense Subgraph problem for static graphs has a rather short history, as the best
exact solution was proposed by Goldberg in 1984 [14] and the best approximation algorithm so
far were proposed by Charikar in 2000 [6] and Khuller and Saha in 2009 [21] for undirected and
directed graphs.

Goldberg’s solution works only for undirected graph. His idea was to interestingly transfer this
dense subgraph problem into a well-know min-cut problem by adding two vertices s and ¢. Both s
and t are connected with all the vertices in graph G = (V, E). For each vertex v; € V, edge (s, v;)
has edge weight that is the same as the degree of v; and edge (v;,t) has edge weight of a positive
constant c¢. All the edges in the original graph has an edge weight of 1. Then buy performing a
min-cut call that splits s and ¢ into two subgraphs, one of the subgraphs would be the densest
subgraph of G after removing s or t.

Since min-cut problem can be solved using the parametric max-flow algorithm, this algorithm
has a O(|V||E|) time complexity. Thus Goldberg’s algorithm is not scalable for large graphs; faster
approximation algorithms are more preferred in industry situations.

In the year of 2000, Charikar [6] proposed an algorithm for detecting the dense subgraph by
a greedy approximation algorithm, which we talked in the last section. In 2009, Khuller, et al.
[21] further extended Charikar’s algorithm to directed graphs and proved both algorithms to be 2-
approximation, which are so far the best algorithms with fast run-time and theoretically guaranteed
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acceptable results.

1.5.2 Fraud Detection

Data-driven approaches have received great success in the field of fraud detection [22, 17]: most
methods indentify unexpected dense regions of the bipartite graph, as creating fake reviews/ratings
unavoidably generates edges in the graph [18, 8, 25, 38, 31, 3].

Unexpected spectral patterns. Global graph mining methods model the entire graph to find
fraud based on singular value decomposition (SVD), latent factor models, and belief propagation
(BP). SPOKEN [29] considered the “spokes” pattern produced by pairs of eigenvectors of graphs,
and was later generalized for fraud detection. FBOX [30] focuses on mini-scale attacks missed by
spectral techniques. BP has been used for fraud classification on eBay [27], link farming on Twitter
[11], and fake software review detection [1].

Unexpected high density in subgraphs. Finding dense subgraphs has been studied from a wide
array of perspectives such as mining frequent subgraph patterns [24, 39], detecting communities
[12, 7, 28], and finding quasi-cliques [13, 35, 10, 32]. Charikar [6] shows that average degree of
subgraph can be maximized with approximation guarantees. Tsourakakis, et al. [36] optimize the
density of adjacency matrix of subgraph with quality guarantees. Hooi, et al. [17] adopt both
node degree and edge density to model suspiciousness of subgraph and further increases accuracy
in binary adjacency matrix of bipartite graph.

Unexpected high density in time-series. Typically there are two kinds of representation on
density in time-series. One is dense subgraphs in evolving graphs [9]. COPYCATCH [4] uses local
search heuristics to find At-bipartite cores in which users consistently likes the same Facebook
pages at the same short time interval. The other is dense subtensors in high-order tensors of a
time dimension [26, 19, 33] or tensor streams [34]. [37, 15] consider fraud detection methods that
are robust to camouflage attacks. Hooi, et al. [16] adopt a Bayesian model to find early spikes of
outlier ratings in time series. All these methods focus on the time-series domain, observing changes
in the behavior from system access logs rather than graph data.

1.6 A Sequential Algorithm

To implement the algorithms we talked in Section 1.4, we use Python 3 with machine learning
libraries numpy! and scipy?. The implementation stores all graphs in sparse matrix format which
is provide by scipy, so graph libraries were not used in the basic implementation.

1.7 A Reference Sequential Implementation

The source codes of Fraudar [17] is publicly available online3. With minor modifications on the

density calculation functions, the codes of Fraudar can become the exact Python 3 implementation
of the algorithm for directed graphs we talked in Section 1.4.

In order to get the algorithm’s best performance, a priority tree data structure must be used to
store all the degrees of vertices so that retrieving the vertex with minimum degree and updating the
degree of its neighbors can be done in logarithmic time. Following is the Python implementation
of priority tree in the source codes of Fraudar [17] with minor modifications.

1http://vaw.numpy.org
*https://www.scipy.org
Shttps://www.andrew.cmu.edu/user /bhooi/projects/fraudar/index.html
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import math
class MinTree:
def __init__(self, degrees):
self.height = int(math.ceil(math.log(len(degrees), 2)))
self .numlLeaves = 2 *x self.height
self .numBranches = self.numleaves - 1
self.n = self.numBranches + self.numleaves
self.nodes = [float(’inf’)] * self.n
for i in range(len(degrees)):
self .nodes[self.numBranches + i] = degrees[i]
for i in reversed(range(self.numBranches)):
self.nodes[i] = min(self.nodes[2 * i + 1], self.nodes[2 * i + 2])

def getMin(self):
cur = 0
for i in range(self.height):
if self.nodes[2 * cur + 1] <= self.nodes[2 * cur + 2]:
cur = (2 * cur + 1)
else:
cur = (2 * cur + 2)
return (cur - self.numBranches, self.nodes[cur])

def changeVal(self, idx, delta):

cur = self.numBranches + idx

self.nodes[cur] += delta

for i in range(self.height):
cur = (cur - 1) // 2
nextParent = min(self.nodes[2 * cur + 1], self.nodes[2 * cur + 2])
if self.nodes[cur] == nextParent:

break

self .nodes[cur] = nextParent

def dump(self):
cur = 0
for i in range(self.height + 1):
for j in range(2 ** i):
cur += 1

1.8 Sequential Scaling Results

All experiments are run on a 2.7 GHz Intel Core i7 Macbook Pro, 16 GB RAM, running OS
X 10.14.1. The graphs used in experiments are generated by a public available Python graph
generator?, which generates bipartite graphs according to given number of vertices and average
degree. The vertices of generated graphs have power-law degree distributions as shown in Figure
1.1.

In the experiments, average degree is fixed as 20 and the results are shown in Table 1.1 and

“https://github.com/cooperative-computing-lab/graph-benchmark
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Figure 1.1: Degree distribution of generate graphs.

plotted in a log-log plot in Figure 1.2. From the results and the plot it is noticeable that this
algorithm has a almost linear performance.

1.9 An Enhanced Algorithm

Two ways exist for enhancing the algorithms for dense subgraph detection. The first way is to
make the algorithm possible to run on dynamic graphs. As all kinds of platforms have a large
number of data coming in every single day, it is crucial for such graph algorithms to be able to
run on dynamic graphs. Bhattacharya, et al. [5] proposed a space- and time-efficient algorithm for
maintaining dense subgraphs on the one-pass dynamic streams in 2015, which is based on («, D, L)-
decomposition and very complicate. The second way is to make the current algorithms to be able
to run on much larger datasets in a acceptable time. In the following few sections, we will focus on
the second kind of enhancement.

The current Charikar’s algorithm implementation loads the whole graph into RAM at the
beginning. When the graph gets extremely large, it is not possible for almost all computer to do
so. Hence the idea is to load only the vertices with their degree information into RAM, because the
number of edges in usually far larger than the number of vertices in most of the graphs. However,
the negative result of doing so is that the algorithm will have to go through the whole edge list,
which is stored in the disk, every time it needs any edge information or the neighbors of one vertex.
Therefore, implementing Charikar’s algorithm in this way will result with a O(n) pass algorithm,
where n is the number of vertices in the graph and 1 pass means the algorithm needs to go through
the whole graph in disk one time. [2] Apparently, when the size of the graph is large, going through
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Number of vertices | Running time (s) ‘

210 0.285
ol 0.533
212 0.778
213 1.394
oM 2.860
215 5.992
216 13.259
217 26.932
218 67.042
219 153.725
220 351.798
221 668.633

Table 1.1: Running time results for the sequential algorithm.

1024
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64
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runtime (s)
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Figure 1.2: Running time results for the sequential algorithm.

Version 1.0 Page 7



Dense Subgraph Detection

the whole graph, which is stored in disk, n times will take a unacceptably long time due to the 1/O
limitation. Bahmani, et al. [2] proposed a modified version of Charikars algorithm, which is able
to maintain a 2(1 + €) approximation bound as well as only using O(log; . n) passes for any € > 0.
The idea of this algorithm is to remove a set of vertices at each iteration instead of only removing
only one vertex. Then the algorithm can be described as following [2].

1: procedure DENSEST-SUBGRAPH(G)
2: Input: Undirected graph G = (V, E).
Output: Dense sugraph S of G.
S,V «+V
while V' £ @ do
AV« {i e V'|degg(i) <2(1+¢€)d(V')}
Vi« V'\ AV
if d(V') > d(S) then
S« VvV
10: return S

This algorithm can also be modified to be used on directed graphs like Charikar’s algorithm.

1.10 A Reference Enhanced Implementation

To implement the algorithm we talked in Section 1.9, we use Python 3 without any outer libraries.
In the implementation, Counter is used to store all the vertices with their degree information and
multiprocessing is used for parallelization.

1.11 Enhanced Scaling Results

All experiments are run on a 2.7 GHz Intel Core i7 Macbook Pro, 16Gb RAM, running OS X
10.14.1. First of all, we tested the enhanced algorithm with a huge Twitter dataset that contains
41.7 million users (vertices) and 1.47 billion follows (edges). The graph is stored as an edge list in
a .txt file which is over 25Gb. For a laptop with 16Gb RAM, it is usually impossible to process
such a large graph as the RAM cannot even store the whole graph. We first tried the sequential
Charikar’s algorithm on this graph and the program was killed by the system within a few minutes.
However, the enhanced algorithm, although very slow, finished the algorithm within three days.
The hyperparameter € was set as 0.5 in this experiment, which resulted with 44 passes of the whole
dataset.

Experiments are also done on the same graphs as the sequential algorithm did, and the results
are shown in Table 1.2. However, it is not reasonable to compare this set of results with the results
in Table 1.1 because this enhanced algorithm is designed for graphs that are too large to fit in
RAM. This enhanced algorithm sacrificed performance for space complexity by not storing any
edge information in the RAM. Therefore, it is reasonable for it to have the slow results shown in
Table 1.2, which fits my anticipation.

1.12 Conclusion

In conclusion, this chapter discussed about several algorithms of dense subgraph detection for fraud
detection. One important enhancement for this kernel is the dense subgraph detection algorithm
for dynamic graphs that I mentioned in Section 1.9, which was not implemented due to time
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Number of vertices \ Running time (s) ‘

210 5.014

oM 21.719
212 109.217
213 311.860

Table 1.2: Running time results for the enhanced algorithm.

limit. Therefore, any future work of this chapter should start with the algorithm proposed by
Bhattacharya, et al. [5].
1.13 Response to Reviews

I made modifications according to each of the advises, specifically:
e Added more information and explain in the introduction section.
e Modified the first algorithm.

Deleted some irrelevant sentences.

Added one more paragraph introducing more algorithms in section 1.5.1.

Corrected a lot of misspellings.
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