Chapter 1

Fraud Detection - Dense Subgraph
Detection

Contributed by Tong Zhao

1.1 Introduction

Fraud behaviors can be spotted everywhere on online applications such as social networks where the
behavior data can be represented as large bipartite graphs which consist of links between followers
and followees. Detecting the fraudsters such as bot followers tend to be an unsupervised problem
as the size of such social network graphs are huge and labeling even a small portion of the graph
will take too much human effort. Luckily, fraudulent actions such as fake followers usually result
with creating subgraphs with unexpected high density. For example, as a large number of follower
buyers buy followers from one major follower seller, these follower buyers together with the bot
followers controlled by the seller will form a subgraph with high density. Therefore, many existing
detection methods [17, 29, 27] estimate the suspiciousness of users by identifying whether they are
within a dense subgraph.

1.2 The Problem as a Graph

Here we define the definitions of density for graphs according to [6, 14, 20].
Let G = (V, E) be a undirected graph with vertices V' and edges E C V x V. E(V) stands for the
set of edges induced by V', that is

EV)={@G,jeE:ieV,jeV}
Then the density of subgraph induced by S C V can be defined as

[E(S)]
d(S) = —=—
S|
Note that 2d(.S) is actually the average degreee of the subgraph induced by S. The Densest Subgraph
problem can be defined as

DS(G) = max{d(S)}

Dense Subgraph Detection

For directed graphs. Let G = (V, E) be a directed graph with vertices V and edges E C V x V.
E(S,T) stands for the set of edges from vertices in S C V' to vertices in 7' C V, that is

ES,T)={(,j)e E:ieS,jeT}
Then the density of subgraph induced by S, T C V can be defined as

[E(S,T)]
VISITI

The Densest Subgraph problem can be defined as

(S, T) =

DS(G) = s{rjl%}%/{d(s, T)}

1.3 Some Realistic Data Sets

The data sets that this application encounter can come from social networks (botnet followers.)
Thus the graph size can be huge. For example, the Twitter follower-followee data set used in Fraudar
[17] contains 41.7 million nodes with 1.47 billion edges. Similar data sets for social networks such
as Twitter can be found on SNAP [23] or other platforms. It is intuitive that the size of graphs for
such problem in real industry will be growing continuously. Hence it is important for the algorithms
to have a linear or near linear run-time or be able to parallelize.

1.4 Dense Subgraph Detection-A Key Graph Kernel

Multiple algorithms exists for detecting the dense subgraphs. One commonly used algorithm is pro-
posed by Charikar in 2000 [6], which is an approximation algorithm by greedy approach. Although
Charikar’s algorithm sacrificed quality of the result subgraph for much better time complexity,
this algorithm still has a provable 2-approximation guarantee [21]. That is, if the densest existing
subgraph S’ has edge density of d(S’) =), the result subgraph S of Charikar’s algorithm will have
edge density of d(S) > \/2.

The greedy idea of Charikar’s algorithm is to remove the vertex that is least likely in the
densest subgraph at each step according to certain rule. In the case of undirected graph, the
rule can obviously be to remove the vertex with lowest degree. Then Charikar’s algorithm can be
described as following [6].

1: procedure DENSEST-SUBGRAPH(G)
2: Input: Undirected graph G = (V, E).
Output: Dense sugraph S of G.
n <« |V]|
G, +— G
for k < n down to 1 do
v <— the vertex with smallest degree in G
Delete all edges incident on v.
Delete all vertices with 0 degree.
10: Gj_1 < the remaining of graph Gy

11: return The subgraph with maximum density amoung G, Go,...,G,.

Version 1.0 Page 2

Dense Subgraph Detection

A detailed proof for this algorithm to achieve a 2-approximation can be found in [21].

For directed graphs, Khuller and Saha proposed a approximation algorithm based on Charikar’s
algorithm in 2009 [21] that ultilized the same greedy idea. The key point of this algorithm for
directed graphs is to first duplicate all the vertices and construct a bipartite graph such that one
copy of the vertices have only outgoing edges and the other copy of the vertices have only incoming
edges. Then the algorithm can be described as following. [21]

1: procedure DENSEST-SUBGRAPH-DIRECTED(G)
2: Input: Directed graph G = (V, E).

3: Output: Dense sugraph S of G.

4: n <« |V|

5: Gzn «~— G

6: for k£ < 2n down to 1 do

7 v < the vertex with smallest degree in Gy

8: if v has outgoing edges then

9: Delete all the outgoing edges incident on v.
10: else

11: Delete all the incoming edges incident on v.
12: Delete all vertices with 0 degree.

13: Gj—1 < the remaining of graph Gy

14: return The subgraph with maximum density amoung G1,Go, ..., Goy,.

A detailed proof for this algorithm to achieve a 2-approximation can also be found in [21].

Both algorithms has time complexity of O(|V|log|V|) and space complexity of O(|V|?|E|). To
evaluate the performance of these two algorithms, both density on the result subgraph and runtime
can be used.

1.5 Prior and Related Work

1.5.1 Dense Subgraph Problem

The history for Dense Subgraph problem for static graphs has a rather short history, as the best
exact solution was proposed by Goldberg in 1984 [14] and the best approximation algorithm so
far were proposed by Charikar in 2000 [6] and Khuller and Saha in 2009 [21] for undirected and
directed graphs.

Goldberg’s solution works only for undirected graph. His idea was to interestingly transfer this
dense subgraph problem into a well-know min-cut problem by adding two vertices s and ¢. Both s
and t are connected with all the vertices in graph G = (V, E). For each vertex v; € V, edge (s, v;)
has edge weight that is the same as the degree of v; and edge (v;,t) has edge weight of a positive
constant c¢. All the edges in the original graph has an edge weight of 1. Then buy performing a
min-cut call that splits s and ¢ into two subgraphs, one of the subgraphs would be the densest
subgraph of G after removing s or t.

Since min-cut problem can be solved using the parametric max-flow algorithm, this algorithm
has a O(|V||E|) time complexity. Thus Goldberg’s algorithm is not scalable for large graphs; faster
approximation algorithms are more preferred in industry situations.

In the year of 2000, Charikar [6] proposed an algorithm for detecting the dense subgraph by
a greedy approximation algorithm, which we talked in the last section. In 2009, Khuller, et al.
[21] further extended Charikar’s algorithm to directed graphs and proved both algorithms to be 2-
approximation, which are so far the best algorithms with fast run-time and theoretically guaranteed

Version 1.0 Page 3

Dense Subgraph Detection
acceptable results.

1.5.2 Fraud Detection

Data-driven approaches have received great success in the field of fraud detection [22, 17]: most
methods indentify unexpected dense regions of the bipartite graph, as creating fake reviews/ratings
unavoidably generates edges in the graph [18, 8, 25, 38, 31, 3].

Unexpected spectral patterns. Global graph mining methods model the entire graph to find
fraud based on singular value decomposition (SVD), latent factor models, and belief propagation
(BP). SPOKEN [29] considered the “spokes” pattern produced by pairs of eigenvectors of graphs,
and was later generalized for fraud detection. FBOX [30] focuses on mini-scale attacks missed by
spectral techniques. BP has been used for fraud classification on eBay [27], link farming on Twitter
[11], and fake software review detection [1].

Unexpected high density in subgraphs. Finding dense subgraphs has been studied from a wide
array of perspectives such as mining frequent subgraph patterns [24, 39], detecting communities
[12, 7, 28], and finding quasi-cliques [13, 35, 10, 32]. Charikar [6] shows that average degree of
subgraph can be maximized with approximation guarantees. Tsourakakis, et al. [36] optimize the
density of adjacency matrix of subgraph with quality guarantees. Hooi, et al. [17] adopt both
node degree and edge density to model suspiciousness of subgraph and further increases accuracy
in binary adjacency matrix of bipartite graph.

Unexpected high density in time-series. Typically there are two kinds of representation on
density in time-series. One is dense subgraphs in evolving graphs [9]. COPYCATCH [4] uses local
search heuristics to find At-bipartite cores in which users consistently likes the same Facebook
pages at the same short time interval. The other is dense subtensors in high-order tensors of a
time dimension [26, 19, 33] or tensor streams [34]. [37, 15] consider fraud detection methods that
are robust to camouflage attacks. Hooi, et al. [16] adopt a Bayesian model to find early spikes of
outlier ratings in time series. All these methods focus on the time-series domain, observing changes
in the behavior from system access logs rather than graph data.

1.6 A Sequential Algorithm

To implement the algorithms we talked in Section 1.4, we use Python 3 with machine learning
libraries numpy! and scipy?. The implementation stores all graphs in sparse matrix format which
is provide by scipy, so graph libraries were not used in the basic implementation.

1.7 A Reference Sequential Implementation

The source codes of Fraudar [17] is publicly available online3. With minor modifications on the

density calculation functions, the codes of Fraudar can become the exact Python 3 implementation
of the algorithm for directed graphs we talked in Section 1.4.

In order to get the algorithm’s best performance, a priority tree data structure must be used to
store all the degrees of vertices so that retrieving the vertex with minimum degree and updating the
degree of its neighbors can be done in logarithmic time. Following is the Python implementation
of priority tree in the source codes of Fraudar [17] with minor modifications.

1http://vaw.numpy.org
*https://www.scipy.org
Shttps://www.andrew.cmu.edu/user /bhooi/projects/fraudar/index.html

Version 1.0 Page 4

Dense Subgraph Detection

import math
class MinTree:
def __init__(self, degrees):
self.height = int(math.ceil(math.log(len(degrees), 2)))
self .numlLeaves = 2 *x self.height
self .numBranches = self.numleaves - 1
self.n = self.numBranches + self.numleaves
self.nodes = [float(’inf’)] * self.n
for i in range(len(degrees)):
self .nodes[self.numBranches + i] = degrees[i]
for i in reversed(range(self.numBranches)):
self.nodes[i] = min(self.nodes[2 * i + 1], self.nodes[2 * i + 2])

def getMin(self):
cur = 0
for i in range(self.height):
if self.nodes[2 * cur + 1] <= self.nodes[2 * cur + 2]:
cur = (2 * cur + 1)
else:
cur = (2 * cur + 2)
return (cur - self.numBranches, self.nodes[cur])

def changeVal(self, idx, delta):

cur = self.numBranches + idx

self.nodes[cur] += delta

for i in range(self.height):
cur = (cur - 1) // 2
nextParent = min(self.nodes[2 * cur + 1], self.nodes[2 * cur + 2])
if self.nodes[cur] == nextParent:

break

self .nodes[cur] = nextParent

def dump(self):
cur = 0
for i in range(self.height + 1):
for j in range(2 ** i):
cur += 1

1.8 Sequential Scaling Results

All experiments are run on a 2.7 GHz Intel Core i7 Macbook Pro, 16 GB RAM, running OS
X 10.14.1. The graphs used in experiments are generated by a public available Python graph
generator?, which generates bipartite graphs according to given number of vertices and average
degree. The vertices of generated graphs have power-law degree distributions as shown in Figure
1.1.

In the experiments, average degree is fixed as 20 and the results are shown in Table 1.1 and

“https://github.com/cooperative-computing-lab/graph-benchmark
Version 1.0 Page 5

Dense Subgraph Detection

103 E
>
2 1024 %
) <
e 5,

"3
101 e
100 E .
T L L B LA | L B S R | L L R R L |
10° 10! 102 10°
Degree

Figure 1.1: Degree distribution of generate graphs.

plotted in a log-log plot in Figure 1.2. From the results and the plot it is noticeable that this
algorithm has a almost linear performance.

1.9 An Enhanced Algorithm

Two ways exist for enhancing the algorithms for dense subgraph detection. The first way is to
make the algorithm possible to run on dynamic graphs. As all kinds of platforms have a large
number of data coming in every single day, it is crucial for such graph algorithms to be able to
run on dynamic graphs. Bhattacharya, et al. [5] proposed a space- and time-efficient algorithm for
maintaining dense subgraphs on the one-pass dynamic streams in 2015, which is based on («, D, L)-
decomposition and very complicate. The second way is to make the current algorithms to be able
to run on much larger datasets in a acceptable time. In the following few sections, we will focus on
the second kind of enhancement.

The current Charikar’s algorithm implementation loads the whole graph into RAM at the
beginning. When the graph gets extremely large, it is not possible for almost all computer to do
so. Hence the idea is to load only the vertices with their degree information into RAM, because the
number of edges in usually far larger than the number of vertices in most of the graphs. However,
the negative result of doing so is that the algorithm will have to go through the whole edge list,
which is stored in the disk, every time it needs any edge information or the neighbors of one vertex.
Therefore, implementing Charikar’s algorithm in this way will result with a O(n) pass algorithm,
where n is the number of vertices in the graph and 1 pass means the algorithm needs to go through
the whole graph in disk one time. [2] Apparently, when the size of the graph is large, going through

Version 1.0 Page 6

Dense Subgraph Detection

Number of vertices | Running time (s) ‘

210 0.285
ol 0.533
212 0.778
213 1.394
oM 2.860
215 5.992
216 13.259
217 26.932
218 67.042
219 153.725
220 351.798
221 668.633

Table 1.1: Running time results for the sequential algorithm.

1024
512

256

64
32

16

runtime (s)

2E+10 2E+11 2E+12 2E+13 2E+14 2E+15 2E+16 2E+17 2E+18 2E+19 2E+20 2E+21
of vertices

Figure 1.2: Running time results for the sequential algorithm.

Version 1.0 Page 7

Dense Subgraph Detection

the whole graph, which is stored in disk, n times will take a unacceptably long time due to the 1/O
limitation. Bahmani, et al. [2] proposed a modified version of Charikars algorithm, which is able
to maintain a 2(1 + €) approximation bound as well as only using O(log; . n) passes for any € > 0.
The idea of this algorithm is to remove a set of vertices at each iteration instead of only removing
only one vertex. Then the algorithm can be described as following [2].

1: procedure DENSEST-SUBGRAPH(G)
2: Input: Undirected graph G = (V, E).
Output: Dense sugraph S of G.
S,V «+V
while V' £ @ do
AV« {i e V'|degg(i) <2(1+¢€)d(V')}
Vi« V'\ AV
if d(V') > d(S) then
S« VvV
10: return S

This algorithm can also be modified to be used on directed graphs like Charikar’s algorithm.

1.10 A Reference Enhanced Implementation

To implement the algorithm we talked in Section 1.9, we use Python 3 without any outer libraries.
In the implementation, Counter is used to store all the vertices with their degree information and
multiprocessing is used for parallelization.

1.11 Enhanced Scaling Results

All experiments are run on a 2.7 GHz Intel Core i7 Macbook Pro, 16Gb RAM, running OS X
10.14.1. First of all, we tested the enhanced algorithm with a huge Twitter dataset that contains
41.7 million users (vertices) and 1.47 billion follows (edges). The graph is stored as an edge list in
a .txt file which is over 25Gb. For a laptop with 16Gb RAM, it is usually impossible to process
such a large graph as the RAM cannot even store the whole graph. We first tried the sequential
Charikar’s algorithm on this graph and the program was killed by the system within a few minutes.
However, the enhanced algorithm, although very slow, finished the algorithm within three days.
The hyperparameter € was set as 0.5 in this experiment, which resulted with 44 passes of the whole
dataset.

Experiments are also done on the same graphs as the sequential algorithm did, and the results
are shown in Table 1.2. However, it is not reasonable to compare this set of results with the results
in Table 1.1 because this enhanced algorithm is designed for graphs that are too large to fit in
RAM. This enhanced algorithm sacrificed performance for space complexity by not storing any
edge information in the RAM. Therefore, it is reasonable for it to have the slow results shown in
Table 1.2, which fits my anticipation.

1.12 Conclusion

In conclusion, this chapter discussed about several algorithms of dense subgraph detection for fraud
detection. One important enhancement for this kernel is the dense subgraph detection algorithm
for dynamic graphs that I mentioned in Section 1.9, which was not implemented due to time

Version 1.0 Page 8

Dense Subgraph Detection

Number of vertices \ Running time (s) ‘

210 5.014

oM 21.719
212 109.217
213 311.860

Table 1.2: Running time results for the enhanced algorithm.

limit. Therefore, any future work of this chapter should start with the algorithm proposed by
Bhattacharya, et al. [5].
1.13 Response to Reviews

I made modifications according to each of the advises, specifically:
e Added more information and explain in the introduction section.
e Modified the first algorithm.

Deleted some irrelevant sentences.

Added one more paragraph introducing more algorithms in section 1.5.1.

Corrected a lot of misspellings.

Version 1.0 Page 9

Bibliography

[1]

2]

Leman Akoglu, Rishi Chandy, and Christos Faloutsos. Opinion fraud detection in online
reviews by network effects. In WSDM, pages 2-11, 2013.

Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in streaming and
mapreduce. Proceedings of the VLDB Endowment, 5(5):454-465, 2012.

Yikun Ban, Xin Liu, Tianyi Zhang, Ling Huang, Yitao Duan, Xue Liu, and Wei Xu. Badlink:
Combining graph and information-theoretical features for online fraud group detection. arXiv
preprint arXiw:1805.10053, 2018.

Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Christos Falout-
sos. Copycatch: stopping group attacks by spotting lockstep behavior in social networks. In
WWW, pages 119-130, 2013.

Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos Tsourakakis.
Space-and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic
streams. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 173-182. ACM, 2015.

Moses Charikar. Greedy approximation algorithms for finding dense components in a graph. In
International Workshop on Approzimation Algorithms for Combinatorial Optimization, pages
84-95. Springer, 2000.

Jie Chen and Yousef Saad. Dense subgraph extraction with application to community detec-
tion. IEEE TKDE, 24(7):1216-1230, 2012.

Carter Chiu, Justin Zhan, and Felix Zhan. Uncovering suspicious activity from partially paired
and incomplete multimodal data. IEEE Access, 5:13689-13698, 2017.

Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. Efficient densest subgraph computation
in evolving graphs. In WWW, pages 300-310, 2015.

Esther Galbrun, Aristides Gionis, and Nikolaj Tatti. Top-k overlapping densest subgraphs.
DMKD, 30(5):1134-1165, 2016.

Saptarshi Ghosh, Bimal Viswanath, Farshad Kooti, Naveen Kumar Sharma, Gautam Kor-
lam, Fabricio Benevenuto, Niloy Ganguly, and Krishna Phani Gummadi. Understanding and
combating link farming in the twitter social network. In WWW, pages 61-70, 2012.

Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. D-cores: Measuring col-
laboration of directed graphs based on degeneracy. In ICDM, pages 201-210, 2011.

10

[13]

[14]

[15]

22]

[23]

[24]

[28]

Dense Subgraph Detection

Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. Evaluating cooperation
in communities with the k-core structure. In ASONAM, pages 87-93, 2011.

Andrew V Goldberg. Finding a mazimum density subgraph. University of California Berkeley,
CA, 1984.

Zhongshu Gu, Kexin Pei, Qifan Wang, Luo Si, Xiangyu Zhang, and Dongyan Xu. Leaps: De-
tecting camouflaged attacks with statistical learning guided by program analysis. In Depend-
able Systems and Networks (DSN), 2015 }5th Annual IEEE/IFIP International Conference
on, pages 57-68. IEEE, 2015.

Bryan Hooi, Neil Shah, Alex Beutel, Stephan Gilinnemann, Leman Akoglu, Mohit Kumar,
Disha Makhija, and Christos Faloutsos. Birdnest: Bayesian inference for ratings-fraud detec-
tion. In SDM, pages 495-503, 2016.

Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos Faloutsos.
Fraudar: Bounding graph fraud in the face of camouflage. In KDD, pages 895-904, 2016.

Xia Hu, Jiliang Tang, and Huan Liu. Online social spammer detection. In AAAI volume 14,
pages 59-65, 2014.

Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shigiang Yang, and Christos Faloutsos.
Spotting suspicious behaviors in multimodal data: A general metric and algorithms. IEEFE
TKDE, 28(8):2187-2200, 2016.

Ravi Kannan and V Vinay. Analyzing the structure of large graphs. Rheinische Friedrich-
Wilhelms-Universitiat Bonn Bonn, 1999.

Samir Khuller and Barna Saha. On finding dense subgraphs. In International Colloquium on
Automata, Languages, and Programming, pages 597-608. Springer, 2009.

Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. Community interaction
and conflict on the web. In WWW, pages 933-943, 2018.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

Chao Liu, Xifeng Yan, Hwanjo Yu, Jiawei Han, and Philip S Yu. Mining behavior graphs for
“backtrace” of noncrashing bugs. In SDM, pages 286-297, 2005.

Shenghua Liu, Bryan Hooi, and Christos Faloutsos. Holoscope: Topology-and-spike aware
fraud detection. In CIKM, pages 1539-1548, 2017.

Koji Maruhashi, Fan Guo, and Christos Faloutsos. Multiaspectforensics: Pattern mining on
large-scale heterogeneous networks with tensor analysis. In ASONAM, pages 203-210, 2011.

Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. Netprobe: a fast
and scalable system for fraud detection in online auction networks. In WWW, pages 201-210,
2007.

Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sénchez, and Emmanuel Miiller. Focused
clustering and outlier detection in large attributed graphs. In KDD, pages 1346-1355, 2014.

Version 1.0 Page 11

Dense Subgraph Detection

[29] B Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju, and Christos Faloutsos.
Eigenspokes: Surprising patterns and scalable community chipping in large graphs. Advances
in knowledge discovery and data mining, pages 435-448, 2010.

[30] Neil Shah, Alex Beutel, Brian Gallagher, and Christos Faloutsos. Spotting suspicious link
behavior with fbox: An adversarial perspective. In ICDM, pages 959-964, 2014.

[31] Hua Shen, Fenglong Ma, Xianchao Zhang, Linlin Zong, Xinyue Liu, and Wenxin Liang. Dis-
covering social spammers from multiple views. Neurocomputing, 225:49-57, 2017.

[32] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Corescope: Graph mining using k-core
analysispatterns, anomalies and algorithms. In ICDM, pages 469478, 2016.

[33] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. D-cube: Dense-block detection
in terabyte-scale tensors. In WSDM, pages 681-689, 2017.

[34] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. Densealert: Incremental dense-
subtensor detection in tensor streams. In KDD, 2017.

[35] Charalampos Tsourakakis. The k-clique densest subgraph problem. In WIWW, pages 1122—
1132, 2015.

[36] Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Maria
Tsiarli. Denser than the densest subgraph: extracting optimal quasi-cliques with quality
guarantees. In KDD, pages 104-112, 2013.

[37] Sankar Virdhagriswaran and Gordon Dakin. Camouflaged fraud detection in domains with
complex relationships. In KDD, pages 941-947, 2006.

[38] Soroush Vosoughi, MostafaNeo Mohsenvand, and Deb Roy. Rumor gauge: predicting the
veracity of rumors on twitter. ACM TKDD, 11(4):50, 2017.

[39] Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. Mining frequent subgraph patterns
from uncertain graph data. IEEE TKDE, 22(9):1203-1218, 2010.

Version 1.0 Page 12

