
Chapter 1

Modularity and Neural Networks

Contributed by Mark Horeni

1.1 Introduction

Community detection is useful unsupervised way to understand more information about a graph.
One way to do community detection is by maximizing a global property of the graph known as
modularity. Maximizing modularity has been used in a wide variety of applications with some suc-
cess in not only biological networks, but other social networks and beyond for community detection
[11] [14]. Specifically, modulairty maximization techniques have been shown to out perform other
community detection algorithms [14].

A lot is known about the human brain, but seemingly nothing is known about it. To study the
human brain scientists typically look at different, more simple examples of connections between
neurons, also known as connectomes. Mapping and knowing the functionality of connectomes is
a hard problem because someone has to look at when a stimulus is received, what neurons fire
when and where. Since these are structures of neurons, it seems like a good assumption that these
neurons would form topologically dense communities in order to send information where it needs
to go.

Finding communities of neurons would aid to our knowledge about the brain. Knowing that
certain neurons work together to perform a function would help us understand interactions of drugs
better, along with insights into the philosophy of knowing ourselves better.

1.2 The Problem as a Graph

Individual neurons can be thought of as nodes, and each neuron has two types of connectors, either
gap junctions or chemical synapses[15]. In the C. elegans round worm, chemical synapses as seen
in Figure 1.1, can have 1, 2, or 3 directed outputs to another neuron, while similarly, gap junctions
can have multiple outputs, but these outputs are undirected as the electrical flow can flow either
way theoretically, even though in a given function this does not end up happening [15].
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Figure 1.1: A view of the neurons and their chemical synapses [4]

1.3 Some Realistic Data Sets

The c. elegans is a transparent roundworm that has had all of its neurons mapped along with all
of the connections. There are a total of 279 neurons, and between them there are around 6393
chemical synapses and 890 electrical gap junctions[4]. Each neuron has an attribute of whether the
neuron itself is either a motor, sensory, or inter neuron (or a combination of), and the distribution
of those are roughly equal across neurons [4].

The worm data is the only complete data, but there does exist partial data for other animals
including partial data from flies, cats, macaques, mice, rats, and humans.For this project the
connectome of a mouse retina, which is 1123 neurons and 577350 connections between neurons
[9] will be used as a benchmark for the middle. Also, MRI data gathered from patients and then
transformed into a graph will also be used as a benchmark for a large graph. This human data
consists of 277,345 neurons and around 64.4 million connections between each of these neurons [3].

1.4 Louvain-A Key Graph Kernel

Modularity, Q, is a measure of how dense a community is compared to how dense a community is
expected to be. The assumption in using modulairty maximization is that nodes inside communities
are more densely connected to each other than to any other node in the network. This is defined
as the following [5]

Q =
1

2m

∑
i,j

[Aij −
kikj
2m

]δ(ci, cj)

where 2m is the weight of all edges, Aij is the weight between i and j, ki and kj are the total weights
attached to each i and j, and ci and cj are the communities. The goal is to find which combinations
of nodes when grouped into certain communities, which combination maximizes modulairty.

1.4.1 Undirected Louvain

Since the goal is to maximize modulairty, the approach of the Louvain algorithm is greedy opti-
mization. To do this, the algorithm first starts with every node in its own community [5]. Next,
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Figure 1.2: Example of the Louvain Algorithm [10]

each node is put into a neighboring community and the change in modularity is calculated by

∆Q = [

∑
in +ki,in
2m

− (

∑
tot +ki
2m

)2]− [

∑
in

2m
− (

∑
tot

2m
)2 − (

k + i

2m
)2]

where
∑

in are the total weights inside community C,
∑

tot is the sum of edges of the links incident
to nodes in C, ki are the sum of incident links of node i, and ki,in is the sum of weights from i in
C with m being the total sum of weights in the network [5].
The other half of the algorithm takes the previous phase, and turns each community into its own
node with a self loop with the weight of all the edges of all the nodes inside the community. When
this finishes, the process goes back to the first half, and the process is repeated until modularity
no longer increases between iterations. This proccess is shown visually in figure 1.2.

1.4.2 Resolution Limit

One of the problems with maximizing modulairty is that there is a problem known as the ”resolution
limit”. Since the formula for modularity is a global property and uses the strength within a
community compared to the strength between communities, in some networks the strength between
real communities may be so close to the strength between communities that modularity may be
optimized if a strong link between two communities is joined into one community [7].

A solution proposed to solve this problem is to introduce a time-scale parameter t to help
stabilize modularity optimizing the quality function [12]

QNL(t) = (1− t) +
1

2m

∑
i,j

[Aijt−
kikj
2m

]δ(ci, cj)

.

1.4.3 Directed Louvain

Although modularity is usually defined for unweighted graphs, in directed graphs it can be defined
as

Qd =
1

m

∑
i,j

[Aij −
dini d

out
j

m
]δ(ci, cj)
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where the only difference is that m is now the weight of all the arcs (directed edges), and din stands
for the in degree of i while doutj stands for the out degree of j [6].
Similarly, change in modularity can be defined as

∆Qd
=
dCi
m
− [

douti

∑in
tot +dini

∑out
in

m2
]

where
∑in

tot is the sum of all in-going arcs into community C, and
∑out

tot are all the out-going arcs
out of community C [6].

1.4.4 Psuodcode

The pusdocode of the algorithm appears to run with time complexity O(n log n), because at every
step nodes are guaranteed to join a community, meaning the number of communities will decrease
every time giving it a log n appearance. Though it can be argued that the time complexity is
actually closer O(n2) because if only 1 node joins a community at a time, then the algorithm has
to run n times for n number of nodes. The psudocode is as follows [11]

Algorithm 1 Louvain

V : a set of vertices
E: a set of edges
W : a set of weights of edges, initialized to 1
G← (V,E,W )
repeat
C ← {{vi}}|vi ∈ G(V ))}
Calculate current modularity Qcur

Qnew ← Qcur

Qold ← Qnew

repeat
for vi ∈ V do
Qnew ← Qcur

remove vi from its current community
Nvi ← {ck|vi ∈ G(V ), vj ∈ ck, eij ∈ G(E)}
find cx ∈ Nvi that has max∆Q{vi},cx > 0

end for
Calculate new modularity Qnew

until no membership change or Qnew = Qcur

V ′ ← {ci|c∈C}
E′ ← {eij |∀eij if vi ∈ Ci, vj ∈ Cj , and C 6 = Cj

W ′ ← {wij |
∑
wij , ∀eij if vi ∈ Ci and vj ∈ Cj}

until Qnew = Qold

This psudocode starts out by accepting {V,E,W} which are the sets of vertices edges and
weights, and then loops calculating current modularity by moving node vi into its neighboring
communities. This loop will stop when all the nodes stop changing communities or if modularity
stops increasing. Finally, a new graph is created. The new set of vertices V ′ is now the communities
found. The new set of edges E′ are the edges that existed between nodes before they were put into
a community, including self loops for intra-community connections. The new set of weights W ′ are
the summation of the weights transformed from changing the edges from nodes to communities.
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1.5 Prior and Related Work

As mentioned previously in this paper, community detection has been applied to connectome data
before. The focus on most of this research is on the C. elegans database because there exists a lot
of metadata for this data set, therefore ground truth on most questions can be known. This hasn’t
prevented from experimenting on other larger connectome graph though, just to a lesser degree of
clarity [10][11][14].

A lot of work has also been done on community detection as a whole, and much on specifically
Louvain. The whole idea of the Louvain kernel came out the need for wanting faster community
detection [5]. Exploration of different attributes of a graph were explored, such as directedness [6].
This idea was then taken even further by parallelizing it, and using different heuristics, made the
algorithm even faster [13].

1.6 A Sequential Algorithm

The initial sequential algorithm can be simply generated by following the psudocode in section 1.4.
The implementation in the next section uses dendograms [2] for processing and NetworkX uses
hash tables [1] for the storage of graphs, although this isn’t the most efficient, it is simple and easy
to implement.

1.7 A Reference Sequential Implementation

For my implementation, I used NetworkX (python), as there already existed a library that im-
plemented Louvain [2], but this library did not support directed graphs, so I had to change the
definition of modularity from the original. The main thing that was changed that it now uses both
in and out degrees, instead of just total degree and dividing by 2. The original implementation
stored the vertex degree pairs as a dictionary and would square the degree. I rewrote these few
lines of code so instead of just using the total degree and dividing by 2, it instead uses the in degree
and the out degree.

1.8 Sequential Scaling Results

Since the worm database was small enough, this was able to run on my computer in under a second,
though measurements in this paper are based on data collected from running the implementation
on Notre Dame’s Center for Research Computing cluster. The parameter that was varied was t,
the resolution value, explained in 1.4.2, along with the three databases mentioned earlier in the
paper. The results are displayed in figure 1.3. As can be seen, as the resolution value goes down,
the time also goes down, and in the Mouse Retina database, quite significantly. The final database
of a subset of human data did not finish running, as I killed it after 12 hours and decided to save
it purely for the enhanced implementation.
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Figure 1.3: Runtime as resolution value decreases

1.9 An Enhanced Algorithm

A algorithm for a parallelized version Louvain was proposed back in 2015 [13]. The algorithm is
very basic in theory, as shown by the psudocode in Algorithm 2 [8]. The algorithm consists of two
main parts, Louvain Iterations and building the graph for the next step.

Algorithm 2 Louvain Parallel

1: Ccurr ← {{u}|∀u ∈ V }
2: {currMod, prevMod} ← 0
3: while true do
4: currMod← LouvainIteration(Gi, Ccurr)
5: if currMod− prevMod ≤ τ then
6: break and output the final set of communities
7: end if
8: BuildNextPhaseGraph(Gi, Ccurr)
9: prevMod← currMod

10: end while

1.9.1 Louvain Iterations

The first part of the proposed parallel algorithm is as described in Algorithm 3 [8]. This algorithm
takes in a subgraph Gi, and performs the same thing as the sequential Louvain would do, except
on the subgraph. After this is done, the nodes calculate the modularity for their subgraph and
reduce all of the modualrities from all the subgraphs to get the current modularity of the graph.
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Algorithm 3 Louvain Iteration

1: Vg ← ExchangeGhostV erticies(Gi)
2: while true do
3: send the latest information on those local vertices that are stored as ghost vertices on remote

processes
4: recieve latest information on all ghost verticies
5: for v ∈ Vi do
6: Compute ∆Q by moving v to neighboring communities
7: Determine which community v belongs to by maximizing ∆Q, and update community

information
8: Send updated information about ghost vertices to owner processes
9: Cinfo ← receive and update information on local communities

10: end for
11: cuurModi ← Compute modularity based on the current subgraph and the community infor-

mation Cinfo

12: currMod← all-reduce
∑

∀i currModi
13: if currMod− prevMod ≤ τ then
14: break
15: end if
16: end while
17: return prevMod← currMod

1.9.2 Building the Next Graph

This step in the algorithm is very similar to the step in the sequential algorithm. In the sequential
algorithm the new graph is generated by taking the communities, making them into vertices, and
making replacing the edges with their weights as the summation of their previous connections.

In this algorithm, the same is done on a local scale, where nodes are remapped from their old
communities (or the starting vertex) to their new ones. The next part of the algorithm is to look
at all these local processes, and globally number all the unique communities. The edge lists of the
communities are then combined, where if an edge already existed between processes the weights
would be added, or if an edge didn’t exist then that edge would be appended to the edge list.

1.10 A Reference Enhanced Implementation

The makers of the original algorithm created a software package called Grappolo. This is a library
written in C++ that uses OpenMP. The there are about 500 lines of code that actually have to do
with the algorithm, and a bunch for for stuff like I/O. The library uses CSR’s to store the graph
instead of Python’s dictionaries, so the amount of memory used should be a lot less.

A modification was made so that testing of different resolution values similar to the sequential
implementation could be done. This ended up being editing of 1 line of code, making sure that the
modularity function optimized the new quality function mentioned in 1.4.2.

1.11 Enhanced Scaling Results

The measurements are based off of using 24 cores running on the Notre Dame’s Center for Research
Computing cluster. Included in this section are both the wall-clock run time of each dataset given
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the resolution value in Figure 1.5 along with how many times the function ”Louvain Iteration” was
called in Figure 1.4, to see how many iterations there actually were.

The total time the longest graph took was around 30 seconds, which is significantly faster than
the more than 12 hours it took in the sequential results. As the resolution limit decreased, there
were less iterations, the algorithm ran faster, which would make sense and shows the same trend
as in the sequential implementation.

As the amount of nodes increased, the time also went up. This seemed to increase O(n log(n)
fashion, but as mentioned before it seems safer to say O(n2) as these graphs weren’t designed to
test worst case, only real world practicality.

The enhanced algorithm ran more than 24 times faster, even though only 24 cores were used.
This seems to be mainly because since louvain is a greedy algorithm, and since every process has
its own subgraph in charge of nodes optimizing a local modularity, a dense subgraph is more likely
to be found locally than globally.

Figure 1.4: Number of iterations taken to converge to maximum Modularity
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Figure 1.5: Number of seconds taken to converge to maximum Modularity

1.12 Conclusion

Although in theory communities may be topologically dense, this does not to seem much in real life.
With some metadata analysis of the worm data set with the communities given, there didn’t seem
to be a strong correlation between anything. This should be researched further to see if there’s
some combination of meta data that can give positive results, or maybe the topology of the graph
means nothing at all.

Louvain as an algorithm is a step in the right direction, as it is faster and easily parallelized to
give an even bigger speedup. A problem though is that this speedup comes at the cost of stability,
the nodes in each community seemed to jump almost randomly from community to community
because of the slightest increase in modularity, even if it didn’t seem to be the best fit. Future
work should look at the stability of Louvain to keep the speedup while maintaining quality.

1.13 Response to Reviews

Once again more detail was added into previous sections, along with some clarification. Actual code
for sequential implementation was taken out because it was just taking up space and didn’t really
add anything I couldn’t say in a few sentences. Some grammar and spelling mistakes throughout
the paper were also fixed.
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