
Chapter 1

Spectral Community Detection

Contributed by Satyaki Sikdar

1.1 Introduction

Humans are highly selective when choosing whom they interact with. This is visible when people
choose whom they want to be friends with from a group of people, or when researchers choose
their collaborators. Social scientists call this process link formation. As expected, the process of
link formation in complex networks is deliberate and non-random. As a result, not every node gets
the same share of edges to connect to. A small number of nodes, called hubs, become part of the
majority of the links, whereas the other nodes share a modest number of links among them [3].
In the world wide web and social networks, hubs hold a position of authority and influence. For
example, Facebook, Google, and Amazon dominate their respective domains despite the presence of
hundreds of competitors [20]. This is partly attributed to their being hubs in the complex network
of the World Wide Web.

Sociologists first studied the theory of link formation in social networks, looking at the interac-
tion between groups of people. The findings identified homophily [34], or the tendency of individuals
to bond with other individuals they share a collective identity — gender, race, class, political views,
and social roles, as the main driving force [10, 1, 35]. This not only results in the formation of
links but also determines their strength. More frequent, stronger ties form between more similar
users, and weaker ties which keep the network together form sporadically [17]. This leads to the
formation of communities or clusters in the network, with nodes in each community having more
links to other nodes in the same community than to the nodes in the rest of the network. This effect
is not restricted to just social networks. In specific networks, communities make intuitive sense.
For example, in social and telecommunication networks, clusters represent social circles; in collab-
oration networks, the clusters represent researchers working on similar areas of research, and so on.
Moreover, communities are often nested, with smaller communities combining to form larger com-
munities [26]. In the collaboration network of researchers across multiple disciplines, each discipline
could be separable into large individual clusters, and inside each of them, there could be smaller
clusters representing sub-disciplines. Extracting this higher-order interaction between the nodes is
very useful in tasks like graph mining and graph compression. Community detection techniques
therefore are used widely in many graph compression [22] and summarization algorithms [23].

While the presence of community structure in complex networks is ubiquitous, the degree of
expression varies. In networks like the collaboration network among researchers [37], the clusters
are highly separable. Researchers are more much more likely to collaborate with people who
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(a) An undirected graph G with
9 nodes and 16 edges.

L a b c d e f g h i



a 3 -1 -1 -1
b -1 4 -1 -1 -1
c -1 4 -1 -1 -1
d -1 -1 3 -1
e -1 -1 -1 -1 4
f -1 4 -1 -1 -1
g -1 3 -1 -1
h -1 -1 3 -1
i -1 -1 -1 -1 4

(b) The Laplacian matrix L of G. The 0 entries
are omitted for clarity.





a −0.378
b −0.178
c −0.378
d −0.332
e −0.178
f +0.291
g +0.291
h +0.431
i +0.431

(c) The Fiedler vector
F of G

Figure 1.1: A graph and its Laplacian matrix and Fiedler vector

work in similar areas as them. The small group of researchers who do inter-disciplinary research
keep the entire network connected. However, in some cases, as in friendship networks, the clusters
represent social circles, which by nature are overlapping and messy [30]. Most community detection
algorithms usually are more effective in graphs where the clusters are well defined. This chapter
describes a particular class of spectral algorithms which are designed to find disjoint communities
in undirected networks.

1.2 The Problem as a Graph

In a graph G = (V,E) where V is the set of nodes and E is the set of edges, a community detection
algorithm generates a cover C = {C1, C2, · · · , Ck} of k communities where nodes lying in the same
community are placed in the same set, and

⋃
iCi = V , that is, every node in the network is assigned

to at least one community.
In disjoint community detection, each node is assigned to exactly one community. Formally,

∀ i, j, Ci ∩ Cj = ∅. In comparison, in overlapping community detection, each node can be a part
of multiple communities, that is, ∃ i, j, Ci ∩ Cj 6= ∅.

The intuition behind community structures given in Section 1.1 can be formalized as follows.
For a community C with nC nodes, let nint(C) and next(C) denote the internal and external
edge counts, signifying the number of edges having both endpoints and exactly one endpoint in
C respectively. Both these counts are normalized to get the internal and external edge densities
represented by δint(C) and δext(C) respectively. The numerator of δext(C) is also called the cut
value of C (cut(C)). For a good clustering C, the internal edge density for each cluster should be
much greater than the external edge density. Mathematically,

δint(C) =

∑
i∈C
j∈C

Aij(
nC
2

) δext(C) =

∑
i∈C
j /∈C

Aij

nC · (n− nC)
cut(C) =

∑
i∈C
j /∈C

Aij

where A and n represent the adjacency matrix and the number of nodes in the graph G.
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1.2.1 The Laplacian Matrix

The Laplacian matrix plays a central role in spectral graph theory. For a connected undirected
graph G = (V,E) with adjacency matrix An×n, the Laplacian matrix Ln×n is defined as L = D−A,
where Dn×n is a diagonal matrix where Dii is the degree of node i. See Figure 1.1b to see the
Laplacian matrix of a toy undirected graph described in Figure 1.1a.

By construction, the Laplacian has some beneficial mathematical properties, some of which
are discussed now. L is symmetric and consists of only real-valued elements. Therefore, it has
real eigenvalues, and the eigenvectors are orthogonal and have real entries. In addition to this,
L is positive semidefinite (since ~xTM~x ≥ 0 for all real-valued ~x), so, the eigenvalues of L are
non-negative. For example, the sorted eigenvalues of the toy graph G are (0, 0.649, 3.198, 3.326, 4,
4.554, 4.641, 5.382, 6.246) respectively.

The smallest eigenvalue λ1 of L is 0 with eigenvector v1 = (1, . . . , 1)T , since the rows of L
sum to zero. This eigen-pair (λ1, v1) is called trivial. The second smallest eigenvalue λ2 and it’s
corresponding eigenvector v2 encodes a lot of topological information about the graph G. This was
first discovered by Fiedler [14] and are therefore named after him. The Fiedler vector v2 of the
toy graph is given in Figure 1.1c. For more properties of the Fiedler vector, see [11]. Section 1.4.1
discusses how the Fiedler vector can be used to find bipartitions.

1.3 Some Realistic Data Sets

Almost all complex networks are expected to have some amount of community structure when
compared to a random graph of similar size. As described in Section 1.1, graphs with well defined
clusters are expected to contain a large number of triangles [6] as they are indicative of the presence
of local cliques.

Due to the universality of the phenomenon, it is observed in graphs of all scales. In the case
of Facebook, the famous social network, their user graph as of 2014 had 1.39 billion active users
and 400 billion edges [9]. Co-authorship networks are another class of networks that are of great
interest to researchers. In Computer Science, for example, DBLP stores the information of 4.3
million publications made by 2.1 million authors across over 5,000 conferences as of September 2018.
This sheer scale dramatically magnifies the difficulty level of the problem. However, through the
advances in research in distributed computing and using novel computing paradigms [41, 31, 46, 32],
researchers can crunch these massive networks and run the necessary algorithms.

Several repositories of real-life networks exist on the internet [12, 29, 24]. There also exists
several artificial graph generation algorithms which produce synthetic graphs having a defined
community structure which are frequently used to validate the effectiveness of community detection
algorithms. The planted partition model [13] for example, takes in the number of nodes n, the
number of communities l, and the mixing parameter µ as an input. A node shares a fraction 1− µ
of its links with the other nodes of its community and a fraction µ with the other nodes in the
network. A lower µ signifies a more prominent community structure. The planted partition model
generates a network having l groups of (nearly) equal size. Benchmarks like the LFR benchmark
graph generator [27] is more flexible than the planted partition model. In addition to the parameters
in the previous model, it allows the user more control over the degree distribution as well as the
size distribution of the communities. This model has been extended to generate directed graphs
with possibly overlapping community structures as well [25].
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(a) The same undirected graph
G from Figure 1.1a

v1 v2 v3



a −0.378 0.521 −0.428
b −0.178 0.418 0.463
c −0.378 −0.521 −0.428
d −0.332 0 0.104
e −0.178 −0.418 0.463
f 0.291 0.232 0.172
g 0.291 −0.232 0.172
h 0.431 0 −0.26
i 0.431 0 −0.26

(b) Eigenvectors corresponding
to 3 smallest positive eigenvalues
of Laplacian L of G.
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(c) 3 Clusters found by K-means
with k=3 on the normalized ma-
trix in (b)

Figure 1.2: A graph, its unnormalized eigenvectors corresponding to 3 smallest positive eigenvalues,
and the resulting clustering

1.4 SCD - A Key Graph Kernel

Community detection is a widely studied area of research. Researchers have chosen multiple ap-
proaches to tackle this problem. A few popular ones involve using spectral techniques [36], graph
sparsification [5, 44], traversals [40, 4], and greedy optimization of quality measures like modular-
ity [7]. For a more comprehensive review of existing methods, see [15, 16].

For this report, two spectral clustering techniques are now described in detail.
The core premise of spectral clustering is that the eigenvectors of the matrices associated with a

graph encode local information which can be used for clustering the nodes. The advantages of the
spectral clustering methods come from their efficiency and mathematical elegance. Additionally,
they usually have provable bounds of the quality of clusters produced [8]. For a survey on spectral
graph clustering methods, see [36].

The nodes and edges in a graph are conventionally described in an abstract space where the
conventional notion of distance between objects does not apply. This is unlike a metric space, where
each object is embedded in d-dimensions. Conventional machine learning tasks like classification
or clustering expect the input data to be in a metric space, so they cannot be directly used for
data represented as graphs. Spectral clustering, however, generates a d-dimensional metric space
embedding of the nodes, i.e., each node gets assigned a d-dimensional coordinate. In addition to
that, it ensures that the nodes that share direct links, or that are part of the same cluster, are
spatially closer too. This results in the transfer of the link and community information from the
abstract space to the metric space. In the bipartition algorithm described in Section 1.4.1, each
node is embedded in 1-dimensional (metric) space, while in the algorithm in Section 1.4.2, it is
k-dimensional.

1.4.1 Spectral bipartition

Hagen et al. [18] proposed an algorithm whose pseudocode is given in Algorithm 1. Nodes are
divided into two clusters p1 and p2 depending on whether the corresponding entry in the Fiedler
vector is above or below the given threshold r. The choice of r therefore influences the quality of
clusters. Popular choices for r include 0 and the median value of the Fiedler vector. For example,
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for r = 0 for the Fiedler vector in Figure 1.1c for the graph in Figure 1.1a finds two clusters {a, b,
c, d, e} and {f, g, h, i}.

The computation of the Fiedler vector dominates the computational complexity of the algo-
rithm. The fastest known method, the Lanczos method [28] takes linear time i.e., O(|V |+ |E|). So,
the overall time complexity of Algorithm 1 is also O(|V |+ |E|).

1.4.2 k-way spectral partition

Ng et. al [39] extends the idea of bipartition described above into k-way partitions as follows.
Instead of using just the Fiedler vector, they use the eigenvectors corresponding to the k-smallest
positive eigenvalues of the Laplacian as a matrix of order |V | × k. By doing so, they generate a
k-dimensional embedding for each of the nodes. Additionally, each row of this matrix is normalized
by its L2 norm since in practice, normalized data tends to produce better quality clusters. These
embeddings are then clustered using any conventional spatial clustering algorithm like K-means [19]
to find k clusters. The pseudocode of this algorithm is given in Algorithm 2.

The running time of the algorithm is dominated by the eigendecomposition and the time taken
by K-means to converge. In practice, the method seems to work fast and scales linearly with the
size of the graph.

1.4.3 Computing Eigen-decompositions

Central to spectral clustering is the computation of eigenvalues and eigenvectors. This report looks
at three popular eigen-decomposition, viz., the Lanczos algorithm with Implicitly Restarted Arnoldi
Methods [28], Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG) [43],
and Trace Minimization Algorithm for the Generalized Eigenvalue problem (TraceMIN) [42]. All
these algorithms are conveniently implemented in the NetworkX and SciPy libraries which makes
for easy comparison of these methods. The Lanczos and the LOBPCG methods use BLAS and
ARPACK libraries [21, 28], and therefore are parallel in nature. This results in reduced running
times compared to the serially implemented TraceMIN algorithm. Also, the Lanczos sacrifices
numerical stability and accuracy for speed.

To test out the performance of each of the methods, Fiedler vectors F were computed 5 times
for each of the graphs described in Table 1.1. The running time as well as the maximum Mean
Absolute Error (MAE) was computed between all pairs of F for a given method, and were plotted
for comparisons in Figure 1.3. The results are quite surprising as all the three methods have almost
identical MAE values while the Lanczos algorithm is consistently the fastest among the three.

1.5 Prior and Related Work

Spectral clustering remains a popular choice for finding clusters for reasons mentioned in Section 1.
While the core premise of using eigendecompositions to encode structural similarity is shared across
all the methods, each algorithm has its own uniqueness built into it and sees applications in a variety
of domains, like computer vision [45, 33] and VLSI design [2]. In each of these methods, some variant
of the minimum-cut problem is solved. Additionally, there have been methods like [38] which
maximizes the modularity of the partitions. For a more detailed overview of spectral clustering
techniques, see [36].
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Algorithm 1 Approximate minimum cut of a connected graph G for a given threshold r

1: procedure approx min cut(G(V,E), r)
2: clusters ← ∅
3: if G has fewer than 2 nodes then
4: clusters ← V
5: else
6: fiedler ← Fiedler vector of G
7: p1 ← ∅
8: p2 ← ∅
9: for u ∈ V do

10: if fiedler[u] < r then
11: p1 ← p1 ∪ {u}
12: else
13: p2 ← p2 ∪ {u}
14: clusters ← clusters ∪ { p1}
15: clusters ← clusters ∪ { p2}
16: return clusters

Algorithm 2 k-way spectral partitioning of a connected graph G

1: procedure k way spectral(G(V,E), k)
2: clusters ← ∅
3: if G has fewer than k nodes then
4: clusters ← V
5: else
6: L ← Laplacian matrix of G
7: evecs ← matrix of eigenvectors corresponding to k-smallest positive eigenvalues of L
8: Normalize each row of evecs by its L2 norm
9: Run K-means clustering on evecs to find k clusters C = {C1, · · · , Ck} using Euclidean

distance
10: clusters ← C
11: return clusters
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Figure 1.3: Running times and numerical stability of the eigen-decomposition algorithms on the
LFR networks described in Table 1.1. Lower is better. The Lanczos method consistently performs
better than the rest.

1.6 A Sequential Algorithm

For implementing Algorithms 1 and 2, we use Python with NetworkX1, numpy2, scipy3, and
scikit-learn4 libraries. NetworkX provides easy to use containers for graphs as well as sup-
porting functions like computing the Laplacian matrix and the Fiedler vector of a graph. SciPy

facilitates easy computation of eigenvectors of arbitrary matrices and scikit-learn has a built-in
implementation of the K-means algorithm.

1.7 A Reference Sequential Implementation

Python implementation of Algorithm 1

import networkx as nx

def approx_min_cut(G, r):

assert nx.is_connected(G), "the graph must be connnected"

clusters = []

if G.order() < 2:

clusters = list(G.nodes())

else:

# compute the Fiedler vector

fiedler_vec = nx.fiedler_vector(G, method=’lanczos’)

1https://networkx.github.io
2http://www.numpy.org
3https://www.scipy.org
4http://scikit-learn.org

Version 1.0 Page 7

https://networkx.github.io
http://www.numpy.org
https://www.scipy.org
http://scikit-learn.org


SCD

# p1 and p2 stores the nodes in each partition

p1, p2 = set(), set()

for node_id, fiedler_val in zip(G.nodes(), fiedler_vec):

if fiedler_val < r:

p1.add(node_id)

else:

p2.add(node_id)

clusters.append(p1)

clusters.append(p2)

return clusters

Python implementation of Algorithm 2

import networkx as nx

import numpy as np

import scipy.sparse.linalg

from sklearn.cluster import KMeans

import sklearn.preprocessing

def k_way_spectral(G, k):

assert nx.is_connected(G), "the graph must be connnected"

clusters = []

if G.order() < k:

clusters = list(G.nodes())

else:

L = nx.laplacian_matrix(G)

# compute the first k + 1 eigenvectors

_, eigenvecs = scipy.sparse.linalg.eigs(L.asfptype(), k=k+1, which=’SM’)

# discard the first trivial eigenvector

eigenvecs = eigenvecs[:, 1:]

# normalize each row by its L2 norm

eigenvecs = sklearn.preprocessing.normalize(eigenvecs)

# run K-means

kmeans = KMeans(n_clusters=k).fit(eigenvecs)

cluster_labels = kmeans.labels_

clusters = [[] for _ in range(max(cluster_labels) + 1)]

for node_id, cluster_id in zip(G.nodes(), cluster_labels):

clusters[cluster_id].append(node_id)

return clusters

1.8 Sequential Scaling Results

The experiments were run on one node of the CRC cluster with 64 cores and 128 GB memory. The
graphs were generated using the LFR benchmark, with more details given in Table 1.1. The top
plot in Figure 1.3 shows the Python running times for Fiedler vector computations.

Version 1.0 Page 8



SCD

Table 1.1: Graph statistics for the LFR networks with 〈k〉 ≈ 16, γ = −2, β = −1, µ = 0.1. 〈k〉, ρ,
and #∆s represent the average degree, graph density (%), and the number of triangles respectively.

Graph Name |V | |E| 〈k〉 ρ #∆s

100 100 795 15.9 16% 2 834
500 500 3 825 15.3 3% 12 296
1k 1 000 7 692 15.384 1.5% 21 491
5k 5 000 38 247 15.298 0.3% 31 063
10k 10 000 76 325 15.265 0.15% 47 136
50k 50 000 383 778 15.351 0.03% 183 152
100k 100 000 765 073 15.30 0.01% 329 364
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Figure 1.4: Running time plots for the k-way spectral clustering algorithm for both Python and
PyPy implementations using the Lanczos algorithm. Lower is better. Most of the time is spent in
the eigen-decomposition algorithm.

Similarly, Figure 1.4 shows the running time for the k-way spectral clustering for both Python
and PyPy5 implementations. Eigen-decomposition dominates the CPU time over the K-means
clustering. PyPy definitely achieves a huge speedup compared to the regular Python interpreter.

1.9 A Parallel Algorithm

I feel the PyPy implementation does not qualify as a parallel implementation, mostly because PyPy
runs the exact same code and does the optimizations behind the scenes.

I recently came across a parallel C++ spectral clustering implementation which uses MPI. I do
plan on getting those data in the report over the winter break.

Hence, the sections 1.10 and 1.11 are empty.

5https://www.pypy.org
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1.10 A Reference Parallel Implementation

1.11 Parallel Scaling Results

1.12 Conclusion

This report covers the Spectral Community Detection kernel. It starts by looking at the causality
behind the formation of communities, and then formalizes the problem in the language of graph
theory. It then discusses two popular algorithms, followed by their implementation and scaling
results. Enhanced implementation was carried out by using the PyPy interpreter which achieved
significant speedup compared to regular Python. While this is the last iteration for the course, the
report unfortunately is still incomplete.

Future work is summarized below.

• Testing the running times on more benchmark and real-world networks.

• Getting the C++ parallel version of spectral clustering to work and benchmarking it.

1.13 Response to Reviews

• Corrected grammar in several places of the text

• Added a section on the graph Laplacian

• Re-wrote certain parts of the pseudocodes to make it more coherent
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