
Chapter 1

Graph Based Genetic Algorithms

Contributed by Kyle M.D. Sweeney

1.1 Introduction

A Genetic Algorithm is fundamentally a searching algorithm for finding “good” solutions when
the solution space is excessively large. Many problem spaces, such as NP-Hard or NP-Complete
problems, are difficult because the possible solution space grows exponentially as the input size of
the problem increases. Consequently, there are no guaranteed easy solutions that can be found in
reasonable time. Searching algorithms, such as Simulated Annealing and Genetic Algorithms look
to nature to find methods of finding reasonably good solutions. In the case of Genetic Algorithms,
solutions are found by simulating evolution, pursuing a survival of the fittest approach.

Let’s take the classic travelling salesman problem [12] where a saleswoman would like to travel
from city to city, visiting each city only once, and taking the shortest route. The problem is
classically known to be NP-Hard. There are N ! possible combinations of routes to search through.
To solve the problem as a genetic algorithm, we can imagine the solution, an ordered list of cities,
to be like “DNA”, and each city is a gene. When organisms breed, they swap genes, and thus
produce new, unique children which may or may not be fitter. Genetic Algorithms require a fitness
function in order to sort out which solutions are moving towards a “good” solution, and are better
than other solutions. In this case, the fitness function is the cost of the trip, given the ordered list
of cities. In each generation, we produce a certain number of children from the solutions in the
specimen pool, add them to the pool, and then only keep a certain number which are most fit,
according to the fitness function. Eventually, we choose to stop, and the most fit function is our
“good” solution.

Of course, while exploring the natural extrema of the solution space, it’s possible for our solu-
tions to get stuck around a local extrema. What this means is that our solution specimens have
become too homogenized, and there’s not enough unique variations to choose from. In genetic
terms, there’s not enough genetic variation. One possible solution to solve this is via mutations.
By introducing mutations during the breeding stage, solutions can jump from one area of the solu-
tion curve to another, ideally pulling the rest of the gene pool away from a local extrema, and back
on the path towards a better, more optimal solution. But this genetic variation has to be carefully
controlled. Too much mutations, and the pool can never stabilize and never travel along the curve.
Too little, and mutations don’t introduce enough variability.

Another possible solution to this issue is to control the breeding process via graphs. By placing
a solution at the vertex of each graph, then the only possibly breeding partners are those who are

1



Graph Based Genetic Algorithms

neighbors of a given vertex. The idea is to simulate having different groups of solutions preserve
different genetic lines [2]. For example, in nature, a single species can be found in many different
parts of the planet, but they adapt to their environment via their genetics. Occasionally cross-
breeding occurs, refreshing the gene pool of both groups by introducing new genetic material.

In this paper, we wished to apply this methodology to the problem of genetic harmonization,
expanded upon in section 1.3. Here we have two different species whose codons, that is the group of
3 nucleotides which code for a specific amino acid, produce their amino acids in different rates. We
have an real DNA sequence (as compared to the “DNA” sequence a genetic algorithm uses) which
encodes for a specific protein in one species, and we wish to find a synonymous DNA sequence in
the other species which produces the amino acids at roughly the same rates.

1.2 The Problem as a Graph

The problem of shrinking genetic variation can be partially solved by mutations, but can also be
solved by the introduction of graphs into the problem space. In nature, the same species can be
found in multiple places around the world, yet are still breed-able with one another. These groups
are genetically similar to one another, and distinct from their cousins in different environments.
For the purposes of solving a problem like the traveling salesman, we can employ graphs by placing
a single solution on each vertex to take advantage of community isolation while permitting limited
genetic-crossover. Ideally, this means that each sub-group will develop a unique solution and by
crossing over, they can help push the other groups towards more optimal solutions. The effectiveness
of this approach in speeding up/improving solutions comes from a combination of the right kind of
graph for the problem being solved. Edges only representing a possible breeding pair.

1.3 Some Realistic Data Sets

To demonstrate integrating graphs as helpers in genetic algorithms, the rest of this chapter will
focus on the application of Genetic Algorithms in finding ideal complementary codon-sequences to
generate proteins in non-human cells at human-rates.

Every protein is comprised of Amino Acids, built inside of cells according to DNA [9]. Inside of
a DNA strand, three nucleotides are strung together to form a codon, which then codes for either
a specific Amino Acid, is a stop marker, or is a start marker. Each codon is used with a certain
amount of frequency, and these frequencies are species specific. Work done by Clark et al. [3]
discuss the implications of these frequencies, and work done by Rodriguez et al. [1] demonstrates
an algorithm for harmonizing DNA sequences between a source and a targeted species. These
papers discuss a method where given a DNA sequence, and the frequencies for a species, a score
can be calculated for each codon based off of those frequencies. We will interpret these scores as
a function over the codon positions. While the same protein is constructed from each sequence,
the “source” function and “target” function could be very different. Harmonizing the DNA, in this
case, means altering which codons are chosen in the “target” so that the resulting “target” function
will be as similar to the “source” function as possible.

Solving this harmonization problem via genetic algorithms can be done by imagining the solution
space as the chosen sequence of codons which still produce the same protein. The fitness function
would then be the difference in the area between the two functions when plotted out. By minimizing
the distance between the two functions, a harmonization can be accomplished.

The production rates and specific DNA sequence was obtained via a prior project done in
collaboration with Gabriel Wright, one of the authors of the Rodriguez et al paper [1].

Version 1.0 Page 2



Graph Based Genetic Algorithms

For our graph selection, we employed two classes of graphs: ones with a variable vertex size,
and one with a fixed number of vertices. In the fixed class, we employed the dodecahedral graph
which emulates a dodecahedron [11], as well as the Desaugres graph, which has 20 vertices, each
having 3 edges [7], see figure 1.1.

In the other class, the variable vertex size, we had five different types. The first was a complete
graph where each vertex connects to every other vertex [6]. The second type was a 2D grid or
lattice graph; each vertex had on average 4 neighbors, with the exception of the edge vertices [10].
The third type was a Caveman graph which is N clusters of K-Cliques [5] are connected together
by moving one edge from clique to connect to another clique, see figure 1.3. The fourth type was
a Windmill graph, a graph with N clusters of K-Cliques and where each clique shares a single,
central vertex [14], see figure 1.2. The fifth type was an Erdos-Renyi graph, where each vertex’s
edge to every other vertex has an p chance of existing [8].

The Dodecahedral and Desaugres graphs are chosen as they are classic graph types, and we
wished to see if they had an impact on the genetic algoirthm. The Erdos-Renyi was similarly chosen.
The Lattice was chosen as it majorly restricts the breeding partners, but it doesn’t necessarily have a
corresponding real-world example for breeding, thus we wished to see if it would have an interesting
effect. The Windmill and Caveman graphs were chosen specifically for employing tight cliques. One
hypothesis we had was to create miniature groups which would go after different extrema points in
the solution space and then cross over DNA every once in a while.

1.4 Graph Based Genetic Algorithms-A Key Graph Kernel

When we apply graphs to isolate the breeding pairs of each potential solution, we perform a sort
of graph “kernel” by traversing the graph to each of the neighbors from every node. The rough
psudeo-code looks something like 1. For each vertex in the graph, breed it with every neighbor
that it has. Of all these children, the most fit one will replace it after breeding has finished. Thus,
in every round, only the most fit specimens remain.

The evaluation of this would be to test this algorithm on different graphs, measuring for speed
and best solution score.

Algorithm 1 Graph Based Evolution

1: procedure Evolve-Single-Generation(G, V, E)
2: R = {}
3: for v in V do
4: N = Neighbors(v)
5: for n in N do
6: C = children(n, v)
7: C.sort()
8: if fitness(C[0]) < fitness(v) then
9: R+ = (c, v)

10: end for
11: end for
12: for r in R do
13: replace(G, r[1], r[0])

14: end for

In our kernel, we define breeding as the process of combining different parts of two solutions

Version 1.0 Page 3



Graph Based Genetic Algorithms

Figure 1.1: The Desargues graph. By David Eppstein - Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=2258499

Version 1.0 Page 4



Graph Based Genetic Algorithms

Figure 1.2: An example windmill graph of 4,5. By Koko90 - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=7833133

Version 1.0 Page 5



Graph Based Genetic Algorithms

Figure 1.3: Sample Caveman graphs. Image from [5]

together to obtain many different “children” solutions, each equally valid solutions. In general,
this process is up to the user of Genetic Algorithms, as it can be application specific. Thus we
don’t include pseudocode as the actual process of breeding is not what is being explored here, only
controlling how and whom can breed.

In our application, our solution is represented by a list of codons. Thus each node has a single
solution, or list of codons. Children are bred by traveling down the list of both parent solutions,
and choosing to take the codon from one of the parents for that position in the list. In our
implementations, we only breed 10 kids. The first two are chosen by splitting the parents in half
and mixing and matching these halves, forming two children. The second two trade off ever other
parent’s codon. This is done effectively twice. The fourth two do the same, but switch every 3rd
item. The fifth two do the same, but every 10th item.

Our fitness function is a modified version of the minmax function from the work done by Ro-
driguez et.al [1]. This function gives a score to each codon in the DNA sequence. Our fitness
function adds up the difference in the score of the reference DNA sequence and our solution se-
quence, with a scaling factor for when the solution DNA sequence has a different slope sign than
the reference DNA sequence’s minmax score. Figure 1.4 demonstrates the actual output of both
the source species minmax function and the target minmax function. The area between the two
lines, labeled “Orig” and “New” respectively, is what is being minimized.

As the kernel is a single round of a genetic algorithm, we perform it 50 times, starting at the
3rd line in the psudo-code.

An assumption of the replace function is that no duplicate solutions will be placed into the graph.
If the replaced solution is already on a different node, then the replacement doesn’t happen.

1.5 Prior and Related Work

Much of this chapter will be applying the work done by Ashlock et al. in their 1999 paper “Graph
Based Genetic Algorithms” [2], where they took different kinds of graphs and applied them to three
genetic algorithms problems. They explored the time it took to solve different genetic algorithm
problems using many different kinds of graphs. This paper focuses on taking that idea and applying
it to the specific problem of bioharmonization.

Version 1.0 Page 6



Graph Based Genetic Algorithms

Figure 1.4: Example Resulting bioharmonization graph. Solution generated by Wattz-Strogats
with 40 vertices, K=10, P=0.1, with a fitness score of 19429.47

Version 1.0 Page 7



Graph Based Genetic Algorithms

1.6 A Sequential Algorithm

The Kernel proposed above, if taken to be sequential, would have a rather complex execution time,
dependent on the execution time of each of the underlying functions, specifically children and
fitness. In the worst case scenario, a fully connected graph, the execution time is O(V 2SC) where
V is the number of vertices in the graph, S is the size of a given solution, and C is the number of
children produced by children. In our specific case, this became O(V 2S) as the number of children
generated for each breeding pair was always 10. The pseudo-polynomial nature of the solution is
the power of the genetic algorithm, as a good chunk of the solution space is evaluated, but done in
an algorithmic manner.

1.7 A Reference Sequential Implementation

Evaluation of this approach was done in Python3, ran using PyPy3 to speed up execution. Our
graphs were then generated in NetworkX.

1.8 Sequential Scaling Results

Using a DNA sequence of 155 Codons for a protein in E.coli, we harmonized it with C. elegans,
M. musculus, H. sapien, and S. cerevisiae. In our variable node sized graphs, we did a round using
20 vertices, and another with 40 vertices. In our resulting tables, both a lower time and a lower
score is better. We tested on a desktop with an Intel Core i7-5960X@3GHz with 16 logical cores,
and 32GB of memory on Windows 10, using WSL Ubuntu 14.04.5 LTS. For every test, we ran it
10 times, taking the standard deviation and mean of the results.

For reference, a first generation solution could have a score of 270,000.
As can be seen in the tables in section 1.14, the general trend is spending more time running the

genetic algorithm, the better the solution. But the results are diminishing returns. For example,
in the fully connected case of S. cerevisiae, we get a score of 19127 using 20 vertices, taking 1106s
to run. Bumping that up to 40 vertices, we only get a score of 17748, but it takes 4 times as long
with 4408s. Using a shorter running example, using only 20 vertices with 50% chance, the Erdos
Renyi graph had a mean runtime of 525s and an average score of 19755, which is hardly worse
than the fully connected graph, yet only takes half the runtime. The graphs being used only limit
the possible mating pairs. While this decreases the runtime, often by an order of magnitude when
choosing a different graph than a fully connected one, the scores are substantially worse.

Most of the tests were undertaken with the pattern of each solution breeding with every partner
it could. There are other breeding patterns, such as breeding only with the best partner, or breeding
with a random partner. Doing a round of tests using this last pattern, choosing a random partner
from the list of available ones, using 40 vertices. Again, here we find that choice of graph had very
little impact on either the solution or the runtime. They all ran in roughly the same amount of
time and achieved roughly the same score.

1.9 A Parallel Algorithm

To modify the sequential algorithm, we used a simple process pool to execute a vertex program.
The vertex program seen in algorithm 3 takes in the current state of the graph and a vertex. The
neighbors of the vertex are then found and bred with the given vertex. The best child out of all
breedings is then returned if it is better than the parent. Once all vertices have been processed,

Version 1.0 Page 8



Graph Based Genetic Algorithms

Algorithm 2 Parallel Graph Based Evolution

1: procedure Evolve-Single-Generation-Parallel(G, V, E, K)
2: R = {}
3: NodeTupes = {}
4: for v in V do
5: nodeTuple+ = (G, v)

6: end for
7: P = pool(K)
8: P.map(V ertexProgram,NodeTupes)
9: R = P.results()

10: for r[1] in R and not r in G do
11: replace(G, r[1], r[0])

12: end for

Algorithm 3 Vertex Program for Parallel Graph Based Evolution

1: procedure VertexProgram(G, v)
2: N = G.neighbors(v)
3: C = {}
4: for n in N do
5: C+ = children(n, v)

6: end for
7: C.sort()
8: if fitness(C[0]) < fitness(v) then
9: return(C[0], v)

10: returnNULL

Version 1.0 Page 9



Graph Based Genetic Algorithms

then the returned generation is applied to the graph, with parents being replaced by their best
child.

1.10 A Reference Parallel Implementation

Our parallel implementation was built off of our sequential one, extending it by using a process
pool. Again we targeted Python3 as our language, using PyPy3 to speed up execution. Graphs were
generated via NetworkX. Parallelization came from having a python process pool, thus achieving
true parallelism in Python.

1.11 Parallel Scaling Results

To test, we again used the same computer as in our sequential implementation. The computer
is a desktop with an Intel Core i7-5960X@3GHz with 16 logical cores, 32GB of memory running
Windows 10. Testing was done using the Windows Subsystem for Linux Ubuntu 14.04.5 LTS.
Every test was ran 10 times to obtain the mean and standard deviation. We used the exact same
data and harmonization as in the sequential scaling as well.

We introduced a new type of graph to use in our Parallel testing: the Wattz-strogatz small
world model [13]. This graph is generated by first putting N vertices in a ring, have each connect
to the K closest neighbors, and then have each edge possibly rewire with probability P [4]. The
main benefit of this graph is that it has more rational clusters by behaving like the common phrase
“six-degrees of separation” where people have their own cluster of people they know, but everyone
is only 6 people away from anyone else [13].

Again for reference, a first generation solution could have a score of about 270,000.
Figure 1.5 demonstrates that as we increase the number of processes in our processor pool we

do get a speed up, however the gains become smaller and smaller every time we double the number
of processes. Going from around 1400s with one process in the pool down to about 300s with 16
processes in the pool we achieve around 4.7x speed up.

Table 1.1: Here we show the score and time in harmonizing E.coli and Brewer’s Yeast vs increasing
the number of vertices. K was 10 and P was 0.1.

In figure 1.1 we show the average score and average time of the tests as we increase the number
of vertices in the graph. There’s a significant increase in time going from 20 vertices up to 100
nods, but there isn’t a corresponding decrease in score. The score does improve by about 13%,
however the time is almost 3x as long.

Version 1.0 Page 10



Graph Based Genetic Algorithms

Figure 1.5: In this test, we show the runtime in harmonizing E.coli and Brewer’s yeast vs increasing
the number of processes in the process pool. The number of vertices was 40, K was 10 and P was
0.1.

Figure 1.2 shows a similar story as figure 1.1 where there is a dramatic increase in the amount
of time, but the improvement is only about 22%. Both solutions are roughly within an order of
magnitude of each other for an almost 7x cost.

Figure 1.3 shows a similar story as the previous figures as well. Going from 20 vertices to 100
vertices takes 7x as long, with roughly 33% improvement.

Section 1.15 details a comparison of Windmill, Caveman, and Wattz-Strogatz graphs all running
at 16 processes and 40 vertices. However they both have different numbers of edges. Windmill and
Caveman achieve this by swapping the number of queues and the size of queues. The Wattz-
Strogatz graph changes the number of K neighbors being connected to. The data demonstrates
that it’s not necessarily the number of vertices in the graph which alters the runtime, but rather
the number of edges. However the charts do show remarkable similarity in scores between the two
different configurations, suggested that the number of vertices does directly impact the score.

1.12 Conclusion

In the end, our work demonstrates that employing graphs can improve the runtime of a genetic
algorithm, especially if the correct type of graph is used. The Fully Connected graphs ended up
with some of the best scores, but at a rather large cost in terms of time elapsed. By carefully
choosing our graphs, we can take a small hit on our score while achieving our roughly equally good
result in significantly less time. Similarly, by parallelizing our application, we can make further
improvements to our score, taking less time and achieving good scores.

A surprising result came from our parallel implementation when we employed the Wattz-
Strogatz graph model. It was able to achieve some of the best scores in the shortest amount

Version 1.0 Page 11



Graph Based Genetic Algorithms

Table 1.2: Here we show the score and time in harmonizing E.coli and Brewer’s Yeast vs increasing
the number of vertices. Here we had 4 cliques of increasing size, running with 16 processes in the
pool.

Table 1.3: Here we show the score and time in harmonizing E.coli and Brewer’s Yeast vs increasing
the number of vertices. Here we had 10% probability of any vertex connecting to any other vertex,
running with 16 processes in the pool.

of time compared to the other graph methods. This is possibly due to it being a more natural
and organic network model and thus beneficial to genetic algorithms. Examining why this is would
be an ideal direction for future work, as well as further research into the current literature on the
usage of graphs to help guide genetic algorithms.

1.13 Response to Reviews

Second Iteration:
In one review, the reviewer pointed out how there were no graphs mentioned in data set, nor

where the data is coming from. That was addressed. The reviewer also commented that breeding
and fitness functions were a bit unclear, so that was expanded upon, as well as saying when the
overall algorithm ends. I cleared up that this project is applying an idea from an earlier paper to
a specific problem, as that was another complaint by the first reviewer. Some bugs were fixed in
the pseudo code, as pointed out by the reviewer, and a clarification of uniqueness of solution in the
replacement. I also made a small change to 1.2 updating that each solution was placed at a node.
I expand on what this means in section 1.4.

The second reviewer had similar complaints, and thus are also addressed.
Third Iteration:

Version 1.0 Page 12



Graph Based Genetic Algorithms

One reviewer mentioned how I needed to put a citation in section 1.5, so I addressed that. The
reviewer also was confused by the DNA terminology at the end of the introduction, thus I made a
little clarification to distinguish between the DNA in our problem, and DNA as a data structure
for genetic algorithms. They also wanted some justification for the graphs chosen, thus I wrote a
paragraph in the basic datasets section explaining why. They also wished for some expansion into
different mutation rates, but measuring that was a little beyond the scope of this project. They
additionally had a few minor changes in grammar, and thus addressed. They also pointed out a
potential bug in Algorithm 1 of replacing a parent multiple times. This was fixed so only the child
with the smallest score was looked at by a parent and possibly replaced. They also pointed out in
appendixA there were some uneccesary leading 0s and in one instance a stdev with only one item
after the decimal point. These were fixed. I also added an example output to demonstrate what is
actually being generated and minimized.

Another reviewer had a few comments that I felt were not fully actionable. For example, they
said that it wasn’t clear what the metrics being evaluated are, yet the kernel section specifically
states we’re looking for low runtime and better scores. They also stated that I should include the
multiple generations in the pseudocode. I feel as if the algorithm itself is about how to use a single
generation with a graph. Most genetic algorithms and other evolutionary algorithms use multiple
generations, thus including that feels redundant. Two reviewers wanted more clarification on what
vertices and edges meant, so I addressed this in the as-a-graph section.

The final reviewer had some similar complaints, as well as a few grammatical errors pointed
out.

Several reviewers wanted to see some visualizations of the graphs, so I added three images for
graphs which are harder to imagine but make better visualization.

Version 1.0 Page 13



Graph Based Genetic Algorithms

1.14 Sequential Scaling Results - Results

Fully Connected - 20 vertices

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 1106.064027 84.105426 19126.919 1283.620401

H. sapien 1025.578735 2.427339 24928.944 1606.458714

M. musculus 1020.771278 2.082315 21137.479 2176.747175

C. elegans 1041.69969 0.767798 23789.236 1482.189131

2D Grid - 20 vertices

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 112.497632 0.603611 25786.073 2065.608277

H. sapien 108.761492 0.569377 28664.414 2154.667222

M. musculus 107.421994 0.119317 26082.867 2162.381269

C. elegans 110.420743 0.108324 26082.867 1815.084957

Windmill Graph - 4,5

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 223.842559 1.001441 23436.453 2572.074629

H. sapien 215.994595 0.466179 28287.147 1813.922553

M. musculus 216.386268 1.20397 24182.217 1931.304768

C. elegans 224.740323 1.584885 27756.876 2479.184106

Version 1.0 Page 14



Graph Based Genetic Algorithms

Caveman Graph - 4,5

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 223.976335 2.085542 25257.561 2122.087532

H. sapien 217.215015 0.891218 30374.471 1695.429033

M. musculus 220.781013 0.234819 26713.461 1856.30301

C. elegans 223.300958 0.234594 28866.525 1547.000103

Erdos-Renyi - 20,0.5

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 525.188143 34.916041 19755.386 1891.456603

H. sapien 510.376475 34.632428 26097.224 1983.388064

M. musculus 525.785302 57.888515 21797.674 1586.296764

C. elegans 602.725836 68.400198 25190.05 1644.452654

Desargues

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 169.624232 0.762033 22348.231 1677.688622

H. sapien 177.160388 0.500322 27590.251 2675.609935

M. musculus 164.078059 0.545794 24807.326 2002.273596

C. elegans 167.43908 0.325993 27069.238 2175.457151

Version 1.0 Page 15



Graph Based Genetic Algorithms

Fully Connected - 40

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 4407.949818 180.660595 17747.837 1073.674007

H. sapien 4166.038358 30.571147 22628.39 1405.021405

M. musculus 4203.88681 108.770135 19826.178 2073.063743

C. elegans 4295.030674 46.220033 20571.038 1319.340475

2D-Grid - 40

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 444.243351 24.377109 21019.449 2326.198972

H. sapien 391.372798 33.135986 23924.596 1550.27023

M. musculus 373.068643 0.282972 23104.234 1864.526685

C. elegans 373.068643 0.593986 24259.694 1947.400487

Windmill - 4,10

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 0981.594376 6.547543 19369.346 2047.492682

H. sapien 0961.863631 2.460456 24557.848 2047.492682

M. musculus 0977.074179 0.66965 21314.179 2339.926058

C. elegans 1003.081456 4.429312 23416.692 2092.55662

Version 1.0 Page 16



Graph Based Genetic Algorithms

Caveman - 4,10

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 1164.003078 122.147287 20447.382 1357.424586

H. sapien 0997.866954 0.791199 25169.657 849.044711

M. musculus 0984.32995 1.111364 21371.185 1739.21804

C. elegans 1010.327206 0.632495 24271.767 1496.809353

Erdos-Renyi - 40,0.1

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 454.887323 48.710071 20182.799 1593.168119

H. sapien 421.002154 31.075691 25366.729 2271.80358

M. musculus 418.624505 44.980772 21653.777 1181.243829

C. elegans 432.977019 33.668121 24098.38 2721.854925

Random Mate- Fully Connected - 40

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 112.914445 0.692567 25491.094 2011.471445

H. sapien 109.614343 0.530169 27581.154 1917.922058

M. musculus 109.074456 0.139277 25906.26 2120.395358

C. elegans 111.604002 0.19365 28398.73 1873.491964

Version 1.0 Page 17



Graph Based Genetic Algorithms

Random Mate- 2D Grid - 40

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 117.153094 0.237125 25994.986 1969.151356

H. sapien 112.069839 0.209047 27425.349 1155.710915

M. musculus 113.049799 0.12099 26199.627 1720.679499

C. elegans 116.833984 0.141174 29231.478 2798.136781

Random Mate- Windmill Graph - 4,5

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 105.765696 0.399097 25199.198 2081.407954

H. sapien 104.575735 0.573102 27805.829 1347.823895

M. musculus 105.645179 0.501267 25258.195 1135.440949

C. elegans 108.486528 0.629473 29777.532 2081.029823

Random Mate- Caveman Graph - 4,10

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 114.436177 0.55969 25539.219 1705.047569

H. sapien 111.138927 1.669333 29753.6 2519.051726

M. musculus 108.949419 0.258024 26960.741 1125.010804

C. elegans 112.650083 0.096759 28374.057 1614.289676

Version 1.0 Page 18



Graph Based Genetic Algorithms

Random Mate- Erdos Renyi - 40,0.1

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 110.97712 2.371762 27572.692 1414.054499

H. sapien 107.17137 2.95958 28022.321 1545.729126

M. musculus 109.823711 2.074018 26623.335 2014.636918

C. elegans 112.247242 2.680797 28052.558 2186.395163

Version 1.0 Page 19



Graph Based Genetic Algorithms

1.15 Parallel Scaling Results - Results

Windmill Graph - 4,25 - 16Proc

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 1408.068770 8.699657 17428.424 1111.514012

H. sapien 1423.719129 10.158205 21811.427 1624.714577

M. musculus 1439.245480 26.072518 18648.071 841.697471

C. elegans 1404.060382 2.853025 20139.532 1090.583855

Windmill Graph - 25,4 - 16Proc

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 469.180785 9.633604 20847.582 1406.669398

H. sapien 495.512529 3.884894 25048.655 1934.238458

M. musculus 466.830144 13.005787 23982.811 1560.534256

C. elegans 456.034971 2.652946 26518.976 2373.275543

Version 1.0 Page 20



Graph Based Genetic Algorithms

Caveman Graph - 4,25 - 16Proc

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 1397.356041 3.315249 17379.616 559.891502

H. sapien 1417.976462 3.782410 21811.167 1155.276183

M. musculus 1421.361858 3.749360 19056.142 905.003859

C. elegans 1406.844888 12.047170 21306.424 1237.06641

Caveman Graph - 25,4 - 16Proc

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 365.723654 6.032161 24305.905 1874.371394

H. sapien 363.854922 0.903344 29282.458 1242.619206

M. musculus 366.806325 2.963881 25348.137 1583.727080

C. elegans 375.012293 3.576178 27629.355 957.840066

Version 1.0 Page 21



Graph Based Genetic Algorithms

Wattz-Strogatz - 40,20,0.1 - 16Proc

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 471.01908 1.914677 17617.438 1750.497095

H. sapien 477.796109 5.220690 23033.722 1135.957858

M. musculus 473.214193 2.311429 19182.586 1310.839698

C. elegans 470.439868 6.602775 21481.47 1274.895345

Wattz-Strogatz - 40,10,0.1 - 16Proc

Genes Time (s) Score

mean stdev mean stdev

S. cerevisiae 287.126895 4.592964 19348.722 1898.003673

H. sapien 288.292479 2.427174 23230.660 880.696387

M. musculus 288.253836 2.194757 20261.781 1514.381834

C. elegans 284.449048 1.707648 22243.756 1684.05801

Version 1.0 Page 22



Bibliography

[1] Scott Emrich Patricia L. Clark Anabel Rodriguez, Gabriel Wright. %minmax: A versatile
tool for calculating and comparing synonymous codon usage and its impact on protein folding.
Protein Science, 1(27):356–362, 2018.

[2] D. Ashlock, M. Smucker, and J. Walker. Graph based genetic algorithms. In Proceedings of the
1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), volume 2, pages
1362–1368 Vol. 2, July 1999.

[3] Thomas F. Clarke, IV and Patricia L. Clark. Rare codons cluster. PLOS ONE, 3(10):1–5, 10
2008.

[4] Network X. watts strogatz graph, 2018.

[5] Eric W Weisstein. Caveman graph – from MathWorld–a Wolfram Web Resource.

[6] Wikipedia contributors. Complete graph — Wikipedia, the free encyclopedia, 2018. [Online;
accessed 20-November-2018].

[7] Wikipedia contributors. Desargues graph — Wikipedia, the free encyclopedia, 2018. [Online;
accessed 20-November-2018].

[8] Wikipedia contributors. Erdsrnyi model — Wikipedia, the free encyclopedia, 2018. [Online;
accessed 20-November-2018].

[9] Wikipedia contributors. Genetic code — Wikipedia, the free encyclopedia, 2018. [Online;
accessed 14-September-2018].

[10] Wikipedia contributors. Lattice graph — Wikipedia, the free encyclopedia, 2018. [Online;
accessed 20-November-2018].

[11] Wikipedia contributors. Regular dodecahedron — Wikipedia, the free encyclopedia, 2018.
[Online; accessed 20-November-2018].

[12] Wikipedia contributors. Travelling salesman problem — Wikipedia, the free encyclopedia,
2018. [Online; accessed 14-September-2018].

[13] Wikipedia contributors. Wattsstrogatz model — Wikipedia, the free encyclopedia, 2018. [On-
line; accessed 12-December-2018].

[14] Wikipedia contributors. Windmill graph — Wikipedia, the free encyclopedia, 2018. [Online;
accessed 20-November-2018].

23


