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1.1 Introduction

Network robustness is a network’s ability to withstand failures and perturbations. Human built
systems, such as airplanes and power plants, often require maintenance with minor errors, i.e.
failure of a single component. However, natural systems exhibit a remarkable ability to retain their
principal functions even when they experience failures in multiple components. For instance, in
protein-protein-interaction (PPI) networks [3], malformed proteins as a result of bad mutations are
common but do not always contribute to diseases. Similarly, in metabolic networks, some chemical
reactions are missed, but their consequences are rarely felt [3]. Hence, it is important to understand
network robustness and its uses.

Researchers have used network robustness in a variety of fields to further understand systems. In
biology, for instance, network robustness is fundamental understanding why some mutations lead to
diseases while others go unnoticed. In ecology, it helps determine how the effect of human actions
propagate through the environment [27]. In sociology, network robustness is used to determine
influence spreaders and decision makers [13]. In engineering, network robustness can determine
the weaknesses in modern infrastructure, such as the Internet and power grids [10]. As a whole,
network robustness plays a key role in the analysis of system stability and the resiliency they must
exhibit in handling perturbations.

Network robustness extends from percolation theory. Percolation theory discusses the effect
on a network where a fraction of nodes or edges are removed. Removal of a few nodes or edges
might have a limited effect on the network. However, the removal of several nodes will probably
have a more profound effect [3]. Such models are often used to analyze real-world phenomena. The
failure of a router or the closure of an airport can be represented as the removal of a node and its
edges from its network representation. However, the question then arises: what percentage of the
nodes must be removed for the network to lose its functionality? In the Internet example, what
percentage of the routers must be nonfunctional for there to not exist any communication between
two routers on the Internet? Similarly, how many airport closures will disconnect air travel between
two countries? The underlying research question is: how does the disruption of these system affect
its overall functionality? To answer these questions, this chapter first delves into the specifics of
network robustness.
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In this chapter, network robustness is examined examined through its effect on power grids.
Power grid networks are comprised of generators, substations and power plants as nodes in the
network and edges capture power lines between them. These networks are vital to the economy
and safety of the people who rely on them. A failure, such as a severed power line or an electrical
fire, can have catastrophic effects on the network. For instance, a blackout involving eleven states
and two Canadian provinces in 1996 was a result of a snapped power line in Oregon [3]. As a result,
this chapter will explore the robustness and the resiliency of such complex systems.

1.2 The Problem as a Graph

Power grid networks can have numerous different actors, ranging from generators, and substations
to power plants. Each of these actors has a different role in the network, and communicate with
other actors. Some of the interaction might be directed, while some might be undirected. This
chapter only considers undirected edges, where power flow, in this model, is allowed to go both
ways. The power grid network is defined as a graph G = (V, E), where |V is the number of vertices,
or nodes, and |F| is the number of edges in our graph. The nodes and edges in these graph can be
weighted, i.e. with the probability of failure. However, this chapter studies connected, undirected,
and unweighted graphs.

A naive approach to disconnect power in the network is to randomly remove nodes or edges, to
model natural disaster similar to the one in Oregon. Attack strategies relying on removing random
nodes will likely not affect the network much, as shown in Figure 1.1, and the disaster originating
in Oregon was an unlikely event. However, an attack strategy relying on random removal of nodes
will probably require the removal of a large number of nodes, significantly decreasing the potency of
the attack. Hence the power grid network is considered resilient to random attacks [9]. A different
approach is to remove nodes or edges based on a metric, known as targeted attacks. The removal of
a few selected nodes or edges has been shown to deteriorate the network functionality significantly
quicker than random removals [23]. In essence, can valuable nodes be determined and removed
from these graphs, G, to significantly decrease the connectedness of the network?
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Figure 1.1: Simulation of random failure on both scale-free and small-world networks. The largest
connected component basically decreases by the removed nodes. The results here are averaged over
several runs.
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There are numerous different graph metrics used to determine valuable nodes. Degree centrality,
for instance, ranks the nodes based on the number of connections or links. Specifically, degree
centrality states that the greater the number of connections, the more important the node, whereas
a different measure, such as the closeness centrality, ranks nodes based on how close they are to the
rest of the nodes in the network. Yet another measure, such as eigenvector centrality, measures how
central a node is based on how central its neighbors are [22]. These metrics can be used to rank
nodes for a targeted attack and will generally result in different failures. The kernel studied in depth
in this chapter is betweenness centrality, a measure which ranks the nodes based on the number of
shortest paths between every other nodes which include the node of interest. A formal introduction
is presented in section 1.4.4. Betweenness centrality has been proven to be a descriptive measure
for flow based networks, like the power grid, which models the flow of electricity [16].

Once these nodes are ranked and removed, the robustness of the network must also be quantified.
One basic approach to quantify the robustness is to determine the size of the largest connected
component. In power grids, this would quantify the number of generators, substations or power
plants that have been disconnected from their source. If the largest connected component is greatly
reduced, then major areas experience blackouts as an increasing number of nodes are isolated [14].
A more formal introduction to the largest connected component is presented in section 1.4.5.

1.3 Some Realistic Data Sets

Infrastructure networks are considered to be highly sensitive and, as such, there is only a few
openly available data sources. An unweighted power grid network of the western United States
containing approximately 5,000 nodes and 6,500 edges is used in this analysis [29]. Larger graphs
are generated to observe the performance of the sequential and parallel betweenness centrality
algorithms. These synthetic networks will be modeled to match power grid data. One such model
for power grids would be the Barabdsi-Albert model, also known as the scale-free model, which
are usually used to model the world-wide-web and human chemical reactions. They are generally
characterized by a few nodes with high degree and many nodes with very low degree, as such the
degree distribution follows a power law distribution [4]. Likewise, a power grid network might have
a few nodes of very high degree - a major power plant. There would also be numerous low degree
nodes represented by numerous local small town power plants or generators.

Another model which can be used to study power grid networks is the Watts-Strogatz small-
world model. This model is generated from a well connected ring lattice, where a number of
edges are rewired. The network is characterized by a Poisson degree distribution, large clustering
coefficient and low average diameter [29]. Specifically, the length of the shortest chain, [ connecting
two nodes grows logarithmically with the number of nodes, n, shown in equation 1.1 [5]. The
Watts-Strogatz model will be able to capture the relationship between utility poles in a very small
town where the diameter, [, grows proportionally with the number of utility poles, n.

[ x log(n) (1.1)

Hierarchical models can also used to model power grid networks. Hierarchical networks are
scale-free and follow a power law degree distribution, but it also exhibits high clustering [21]. This
model will capture the distribution of power from a source to the peripheral, i.e. power is distributed
to the small towns after being generated at a major power plant. This model is not studied in this
chapter.
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1.4 Betweenness - A Key Graph Kernel

Since targeted attacks require targeting specific nodes, measures of node centrality leads to different
results. Some common centrality metrics to measure network robustness are presented in the
following section. Cudra et al presents a more comprehensive lists of centrality measures used to
determine network robustness [14]. The measure implemented and studied in detail in this chapter
is the betweenness centrality, covered in depth in section 1.4.4. After the removal of the central
nodes based on a metric, an evaluation is done to determine the effectiveness of the metric. This
study uses the largest connected component to measure the robustness of a network, introduced in
section 1.4.5.

1.4.1 Degree Centrality

One simple but often very apt centrality measure is degree centrality. Degree centrality measures
the number of edges incident upon a node. The higher the degree of a node, the more neighbors
it has and the more connected it is to the network [16]. Hence, if the graph, G = (V, E), is given
in a adjacency matrix A, then the degree centrality of node ¢ € G is its degree d;. Specifically, if
n = |V, then the degree centrality can be calculated using equation 1.2 and 1.3.

1, if 4 and j are connected by an edge
Ay = { J Y & (1.2)

0, otherwise

di =) Aj (1.3)
j=1

Calculating the degree centrality is a fairly simple procedure and requires O(FE) to traverse all
the edges of G.

1.4.2 Eigenvector Centrality

Another widely used measure is eigenvector centrality which expands upon the degree centrality.
Whereas degree centrality measures the direct neighbors of a node, eigenvector centrality gives
importance to nodes whose neighbors are themselves important in the network. Specifically, the
eigenvector centrality C, of a node ¢ is defined to be proportional to the sum of the eigenvector
centrality of the neighbors of i and is calculated with equation 1.4, where p is a constant, M (i) are
the neighbors of node i, and n = |V|. With a few rearrangements (see reference for the derivation),
equation 1.4 can be transformed into the general eigenvector problem, shown in equation 1.5. It
should be noted that eigenvector centrality values are all non-negative for a connected graph.

Celi) = 5 32 Cult) = =3~ 4yCel) (1)
) J=1

teM (i

AC. = \C, (1.5)

Eigenvector centrality will basically rank nodes as influential if they are connected to other
influential nodes. As such, it can be applied to determine important nodes in numerous real world
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applications. For instance, in social networks, a Twitter user who is connected to a few highly
influential users, might be more important than an individual who has numerous insignificant
followers. A variation of eigenvector centrality is used by Google PageRank and is optimized to
handle over 25 billion webpages [2]. Nonetheless, the eigenvector centrality solves an involved
equation, which includes solving for the eigenvalues of a graph’s adjacency matrix, and the best
running time achieved is ©(V3) [20].

1.4.3 k-shell Decomposition

Another metric to determine important nodes in a network is k-shell decomposition. This decom-
position starts by removing all nodes of degree 1. The new network is then evaluated and, any
node which ends up with a degree of 1, as a result of the removal, is also removed. This procedure
is followed until there is no more nodes with degree 1. All node removed will receive a k-shell score
of 1. This process is then repeated for all nodes with degree 2 to k, until every node has received
a k-shell score [12]. Higher k-shell score corresponds to a more central position in the network.

k-shell decomposition has been used with great success in a variety of different applications.
Carmi et al [12] shows that the k-shell decomposition produces insights into the underlying structure
of the Internet. Yaveroglu et al [30] shows that the k-shell decomposition can correctly identify
the most influential nodes. Yaveroglu also shows that the highest k-shell scored nodes do not
necessarily have the highest degree, hence the degree centrality and k-shell decomposition produces
vastly different rankings.

1.4.4 Betweenness Centrality

Betweenness centrality is common network metric used for various different applications. It has
been used to determine interdisciplinary nature of scientific journals [17], information flow between
different firms in an alliance network [15], and even evolution of research in collaborative net-
works [1]. More importantly, it has been used numerous times as the prime centrality metric for
determining robustness of power grid networks [11] and communication networks [25].

Betweenness centrality is a global centrality measure based on the shortest paths. This measure
considers the number of times a node lies “between” the shortest paths of all other nodes in the
network. Specifically, it is defined as the sum of the portion of shortest paths that traverse through
the node of interest between the shortest paths of any two other nodes [1]. Formally, the betweenness
of a node i is defined in equation 1.6, where o4 is the total number of shortest paths between nodes
s and t, and og(i) is the number of those shortest paths that include node i. Multiple shortest
paths between two nodes are permitted.

Cpli) = 3 7 (16)

g
sEt£i St

Nodes with high betweenness are vital to the the structure and the function of the network. In
real networks, these nodes are often associated with power and influence in the organization [6].
In power grid networks, high betweenness centrality will indicate that the node is vital to the
performance of the network. Removal of such a node might result in power rerouted to other lines,
potentially overloading them. Removal of a significant number of these nodes might cripple the
functionality of the network. Since betweenness centrality is significant in flow networks, like power
grids, it is studied in depth in the following sections.
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1.4.5 Network Robustness Measure

Researchers often use different metrics to quantify the robustness of a network. For instance,
the average path length of a network can be used to quantify network robustness, as shown in
equation 1.7, where n = |V| and d;; is the shortest distance between node ¢ and node j. The
average path length is normalized over all the available node-pairs, n(n —1). A larger average path
length means that nodes are farther apart from each other, and removal of a node can significantly
increase the average paths between many other nodes, decreasing the robustness of the network.

1
| = Yr Z dyj (1.7)
i#]

Another metric used to quantify robustness is efficiency, E, of a network. Specifically, in
power grids and communication networks, efficiency of sending data between two nodes ¢ and j
is proportional to the reciprocal of their scalar distance, as shown in equation 1.8, where n = |V|
and d;; is the shortest distance between node ¢ and node j. A drop in efficiency, due to a dropped
node j, will directly relate to the robustness of the network, often referred to as the efficiency drop,
VE(i). Network robustness efficiency measure can be calculated using equation 1.9, where E is the
initial network efficiency, and E; is the efficiency of the network after the removal of a node. A
robust network would have a small drop in the network efficiency with the removal of a node.

1 1
E = 2D ; i (1.8)
V(i) = £ (19)

In this chapter, network robustness is measured by considering the largest connected component.
If removal of a few nodes significantly decrease the size of the largest connected component, then the
network is considered vulnerable, i.e. not robust. A study on the robustness of the European Power
Grid under targeted attack quantifies robustness by measuring the size of the largest connected
component, as shown in equation 1.10, where n = |V| and n’ is the number of nodes in the largest
connected component. The total run time to compute the largest connected component of a graph
is O(|V| + |E|) [24].

G (1.10)

n/
n

1.5 Prior and Related Work

Network robustness has been studied for infrastructure networks, like power grids and air transport
networks. Robustness in such networks guarantee that normal functionality is sustained in the face
of failures or attacks. Tu et al [26] studied the robustness of simulated power grid network. These
networks were generated to have properties such as scale-free and small world. A variety of different
centrality metrics were used. The robustness metric used in this study was the number of unserved
stations or, in other words, the number of disconnected nodes. Another study by Wang et al [28]
studied the IEEE 57 and IEEE 118 synthetic network power systems using betweenness centrality.
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In this study, the robustness measure focused specifically on cascading failures of power grids,
failures which would spread throughout the network - a common feature of power grid networks.

Lordan et al [18] studied network robustness in the context of air transport network with be-
tweenness. The study determined that the hub-and-spoke model, which is often used by airlines, is
too sensitive to closures and can be easily manipulated. Such designs can have huge financial con-
sequences for airlines in natural disasters, like the eruption of the Icelandic volcano Eyjafjallajokull
in 2010, as well as targeted attacks [8].

1.6 A Sequential Algorithm

The state of the art algorithm used to compute the betweenness centrality, covered in section 1.4.4,
of a network was developed by Ulrik Brandes in 2001. Brandes was able to reduce the time
complexity of betweenness centrality from ©(n?) to O(nm) and space complexity from ©(n?) to to
O(n+m) [7]. The time complexity is limited by the BFS traversal used to count the number of
shortest path, as explained below.

Pseudocode of this algorithm, from Brandes’ paper, is provided below. Brandes’s algorithm
takes advantage of a few observations to achieve this. First, Brandes proves that a vertex v € V
lies on a shortest path, between vertices s,t € V, if and only if dg(s,t) = da(s,v) + dg(v,t),
meaning that the shortest path between two nodes, d¢g, that are not neighbors will go through an
intermediary node. Moreover, Brandes also proves that if there is exactly one shortest path from
s € V to each t € V, then the dependency, 0, of s on any v € V' obeys equation 1.11, where Ps(w)
is the set of predecessors on the shortest path, oy, is the number of shortest path from s to v.
Reduction of this dependency is shown in algorithm 1 line 29.

The very first initialization is a container to hold the results. Next, a stack, queue, and several
arrays are also initialized. Arrays ¢ and d hold the number of shortest paths from the traversed
vertices to the current source, s, and the distance of each vertex from s, respectively. P[w], the
predecessor set, is a linked-list which contains all the vertices visited prior to v. Lines 9 to 24 is
the BFS traversal from the source s, where the distance from the source to each vertex is also
computed. For each of the vertices, v, that are found, there is a list of predecessor vertices that
are closer to the source, s. Hence, all of these shortest paths must go through its parents and
are contained in o[v]. Finally, lines 26 to lines 34 computes the betweenness centrality using the
dependency.

swy= > U1+ 6,) (1.11)

O sw
(w|v€PS (w))

1.7 A Reference Sequential Implementation

The sequential algorithm was implemented in NetworkX, an open-source Python library specifically
designed to manage graphs. NetworkX provides an easy environment for graphs with many basic
graph functions like betweenness centrality measure and the largest connected component. The
betweenness centrality function in NetworkX uses an implementation of the Brandes’s algorithm,
with a run time of O(nm).

The experiment is designed to compute the betweenness centrality of large graphs of vary-
ing sizes and properties. Generators, conveniently provided by NetworkX, are used to produce
Barabasi-Albert scale-free, Watts-Strogatz small-world, and complete graph models of varying
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Algorithm 1 Betweenness Centrality in Unweighted Graphs:

1. Cgv] «+0,veV
2: for sV do
3: S < empty stack;

4: Plw] < empty list, w € V;

5: olt] « 0,t € V; ofs] + 1,

6: d[t] < —1,t € V;d]s] < 0;

7 Q) <+ empty queue;

8: enqueue s — Q;

9: while () not empty do

10: dequeue v < Q;

11: push v — S

12: for all neighbor w of v do
13: //w found for the first time?
14: if d[w] < 0 then

15: enqueue w — Q;

16: dw] + d[v] +1

17: end if

18: if djw] = d[v] + 1 then
19: olw] + ow] + o[v];
20: append v — Plw];
21: end if

22: end for all

23: end while

24: Ov] - 0,v e V;

25: //S returns vertices in increasing order from s
26: while S not empty do

27: [p| w + S;

28: for v € Plw| do

20: ofv] = fv] + H2 - (1 + o))
30: end for

31: if w # s then

32: Cplw] - Clw] + d[w];
33: end if

34: end while

35: end for

Version 1.0 Page 8



Betweenness

sizes. Wall clock is used to time the algorithm as it computes the betweenness measure for all
the nodes. Nodes are then removed, in every iteration, based on the largest betweenness value, and
all of its edges are disconnected. This experiment allows us to observe the effect of nodes and edges
on the runtime of betweenness centrality, as well as the effect of node removal on the runtime and
robustness of the network.

1.8 Sequential Scaling Results

The largest connected component is measured to quantify the robustness of the input networks.
The results show that for randomly generated scale-free networks, as the graph increases in size,
the average time required to calculate betweenness centrality grows super-linearly. Moreover, it
also shows that in some cases, with the removal of a handful of nodes (i.e. 16 nodes for the 100
node scale-free model), robustness is decreased significantly, by more than 40% in the 100 node
scale-free network.
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Figure 1.2: Results of scale-free betweenness centrality targeted attacks.

Running the same pipeline on randomly generated small-world networks of varying sizes, pro-
duces similar results, as shown in Figure 1.3. The small-world network seems to be slightly more
robust than the scale-free network, as removal of 17 nodes lead to a largest connected component
of 80%, whereas in the scale-free network the size would be 60%, for the 100 node graph. Moreover,
for the 200 node graphs, the small-world network is slightly more robust with a largest connected
component size of approximately 85% after 30 node removals, whereas the largest connected com-
ponent for the scale-free network is slightly less than 80%. Similarly, the average time requirement
for the betweenness centrality is also super-linear in the small-world network, and matches the
scale-free network very well.

This experiment was also conducted on complete graphs of varying sizes. Complete graphs
have all nodes connected to each other, and will contain the maximum number of edges possible,
ie. |E| =n(n—1)a~ O(n?). Such a graph would test the upper limit, in terms of edges, of the
betweenness centrality since Brandes’ algorithm is dependent not only on the number of nodes, but
also on the number of edges, hence Brandes’ algorithm for complete graphs would have a complexity
of O(n?). The results are displayed in Figure 1.5, please note that the average time required for the
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Figure 1.3: Results of small-world betweenness centrality targeted attacks.

800 node complete graph is the same as the time for 3200 node of the scale-free and the small-world
networks, showing that complete graphs require significantly more time. Moreover, the complete
graph’s robustness is the best between the three models, as removal of 30% of the nodes for the
100 node complete graph only decreases the robustness by approximately 30%. This is because in
a complete graph every node is connected, so removal of one node does not change the shortest
paths between other nodes, since they are all neighbors.

The pipeline was also run on a real power grid network of the western United States. This real
data set consists of approximate 5,000 nodes and 6, 500 edges, with a diameter of 46 edges and the
largest degree being 19, but an average degree of 2.67. The low average degree signifies that a large
majority of the nodes are connected as an intermediary between two other nodes. However, the
maximum degree signifies that there are certain hubs within this network. The degree distribution
follows a power law, and hence the graph can be modeled well with a scale-free network. With
the removal of just 28 nodes using the betweenness centrality, the largest connected component
is decreased by about 35%. In other words, with the removal of just 0.567% of the nodes from
the original graph, the largest connected component is decreased significantly. Moreover, as the
largest connected component of the network decreases, so does the time required to calculate the
betweenness centrality, and is correlated with the size of the largest connected component. It is
obvious from this experiment that with the use of betweenness centrality, networks can be attacked
successfully, and the largest connected component can be significantly reduced.

1.9 A Parallel Algorithm

Madduri et al [19] presents several different parallel algorithm to calculate betweenness centrality.
One approach is optimized to work well on graphs with small diameter. It does so by taking ad-
vantage of the sequential Brandes’ algorithm and an augmented breadth-first-search (BFS). Each
processors execute independently while updating the final centrality score. While the time com-
plexity is comparable to the runtime complexity of Brandes’s algorithm, this approach requires
O(p(n + m)) memory, where n is the number of nodes, m is the number of edges, and p is the
number of processes. The memory constraint make this approach unfeasible on large graphs.

Version 1.0 Page 10



Betweenness

LCC of Complete Networks

o o
) ©
|

LCC (% of Original)
o
=

—e— 100
{ —e— 200
—o— 400
—e— 800

o
[N]

0.0

0 5 10 15 20 25 30
Node Removed
(a) Size of the resulting largest connected component

in comparison with the original component with the
removal of the highest betweenness centrality node.

Complete Graph Betweenness Time

25_

23_

21_

Time (s)

27 2 2
Number of Nodes
(b) Average time required to calculate betweenness

centrality, at every iteration, for different size com-
plete graphs. Note: the size of the graphs differ.

Figure 1.4: Results of complete graph betweenness centrality targeted attacks. The network exhibits
very robust properties as the largest connected component for each complete network is exactly 1
less than prior iteration, accounting for the node that was removed. Note that since m ~ O(n?),
this exhibits the upper bound of time required to calculate betweenness centrality.

LCC of Western US Powergrid Network Betweenness Time of Real Powergrid Network

1.0 A

o
©
~
o
L

o
o

LCC (% of Original)
o
=

©
[N}

0.0

0 10 20 30 40 50 0 10 20 30 40 50
Node Removed Node Removed

(a) Size of the resulting largest connected component
in comparison with the original component with the
removal of the highest betweenness centrality node.
Removal of 28 makes the network vulnerable.

(b) Time required to calculate betweenness central-
ity at every iteration. Note: the time required to cal-
culate betweenness correlates well with the largest
connected component.

Figure 1.5: Results of complete graph betweenness centrality targeted attacks.

The second approach is a fined grained parallelization of augmented BF'S. Starting at the source
vertex s, The number of visited nodes are slowly increased while simultaneously computing the
shortest paths using augmented BFS. A multiset of predecessors associated with each vertex, is
maintained, where a vertex v belongs to a multiset of w if (v, w) € E and d(s,w) = d(s,v)+1. The
access to the shared data structure, such as the multiset and stack, will need to be synchronized [19].
Using the XMT implementation on 16 processors, Madduri et. al is able to obtain an average
speedup of 10.5.
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1.10 A Reference Parallel Implementation

A parallel version of the betweenness centrality was implemented using Pool module from Multi-
processing package of Python. The Multiprocessing package supports spawning processing using a
convenient API. The parallel implementation uses the fine grained approach, introduced by Mad-
duri et al [19], with augmented BFS. Since Brandes’ algorithm is limited by BFS shortest path
computation, the parallel implementation reduces the time complexity by a constant factor p, for
the number of processes used in parallel.

1.11 Parallel Scaling Results

A thorough performance analysis is conducted on the betweenness centrality implementations on
the University of Notre Dame’s Center for Research Computing (CRC). A Lenovo NeXtScale nx360
with 12 dual-core 2.5GHz Intel Xeon is used in this analysis. The code is built using Multiprocessing
and NetworkX packages in Python. Large input graphs were generated using NetworkX. Barabasi-
Albert scale-free and Watts-Strogatz small-world models were tested in the parallel betweenness
centrality. The results, shown in Figure 1.6, display, on average, a 4.3x speedup over the serial
implementation. The speedup is skewed, as larger graphs gain larger speedup than smaller graphs.

Best Serial vs. Best Parallel

210
Implementation
2%1 —e— Sw-serial
—e— SF-serial
—0— SW-parallel
24 | —@— SF-parallel

26_

Average Time (s)

2]7 2IS 2I9 2I10 2111 2]12 2I13 2I14 2I15
Number of Nodes

Figure 1.6: The parallel implementation is a constant factor of p faster than the serial implementa-
tion of Brandes’ algorithm. The Watts-Strogratz model for runs slightly faster for both parallel and
serial implementation than the Barabasi-Albert scale-free model, since the Watts-Strogatz model
had fewer edges. The results presented here are for one calculation of betweenness centrality, before
removal of any nodes.

The effect of the number of available processes also change the required time of the betweenness
calculation. Figure 1.1 shows that as the number of processes double, the calculation time for a
graph is halved. The straight line suggests that there is a power law relationship between time
graph size and time. Please note that the edges of the networks used in Figure 1.1, are of the order
of O(n), and not O(n?), as it is for dense networks. The parallel implementation should produce
a steeper slope in a log-log plot, with a slope of 3, since Brandes’ algorithm has a time complexity
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(a) Effect of parallel betweenness calculation on the
scale-free networks. The number of edges are ap-
proximately 3 % n, where n is the number of nodes.

(b) Effect of parallel betweenness calculation on the
small-world networks. The number of edges are ap-
proximately 2 % n, where n is the number of nodes.

Figure 1.7: For large networks, doubling the number of available processes decreases the between-
ness computation time by half.

of O(nm), and |m| =~ O(n?) for dense graphs. Therefore, it is safe to conclude that the parallel
implementation reduces the runtime by a constant factor p for the number of processes allocated
to the program.

1.12 Conclusion

This paper discusses the importance of betweenness centrality in the analysis of the robustness of
power grids. It is shown that the removal of just 0.6% of nodes, based on the betweenness centrality
metric, from a power grid network of the western United States can reduce the largest connected
component by approximately 50% of its original size. A sequential implementation of the between-
ness centrality in Python using NetworkX is provided. Subsequent parallel implementation using
the Multiprocessing and NetworkX packages are also shown, where the parallel implementation
shows an average speed up of over 4%, and introduces a constant reduction factor of p for the num-
ber of available processes to the program. This speedup is dependent on the number of processes
used in the parallel version. The parallel version provides greater speedup for larger graphs, in
comparison to speedups of smaller graphs.

There are several areas that can be explored in terms of network robustness as well as between-
ness centrality. Betweenness centrality has been shown to be an effective metric in determining
the robustness of a power grid. However, there might be better measures, an area I am exploring.
In terms of betweenness centrality, work needs to be done to evaluate the runtime of the parallel
implementation on dense graphs, which are not representative of power grids and are not explored
in this chapter.
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