
Chapter 1

Filesystem Partitioning via
Hierarchical Cluster Analysis

Contributed by Tim Shaffer

1.1 Introduction

As research computation achieves larger scales and takes greater advantage of hardware accelerators
such as FPGAs, GPUs, and TPUs, the availability and performance of the storage system becomes
a bottleneck in the overall performance of an application. Checkpointing, scratch storage, and data
distribution all place storage in the critical path of the application, forcing the storage system to
keep up. Parallel filesystems offer a way of delivering large file I/O bandwidth, scaling with storage
hardware by striping blocks, files, and volumes across different devices, and maintaining consistent
metadata and organization.

While data servers can easily increase replication and shift load away from overloaded servers,
metadata servers must maintain stronger consistency guarantees. It is common to use filesystem
partitioning to balance the load of requests. Choice of partitioning scheme depends on user activity
and filesystem organization. While it is possible in some cases to shift excessive loads between meta-
data servers, the requirement for consistent semantics of operations makes it difficult to distribute
a single part of the filesystem tree across multiple metadata servers. When load on a particular
metadata server becomes excessive, all requests (including some data requests) cannot be served
efficiently. Users then experience degraded performance or loss of service despite. In this situation,
accesses to a single part of the filesystem translate to load on a single metadata server responsible
for a partition. Thus the overall system’s performance is degraded while leaving data storage nodes
underutilized [15]. For parallel filesyetems at increasing scales, metadata bottlenecks become the
limiting factor for performance and usability. These pathological metadata access patterns motivate
many of the design choices of modern parallel filesystems.

Widely deployed shared filesystems such as Panasas [14], Lustre [2], Ceph [13], Gluster [9], and
HDFS [11] rely on separate data and metadata servers to make a filesystem tree and its data visible
from anywhere in the system. Typical access patterns observed for file data allow for optimizations
to servers that can simplify operation and improve throughput and parallel access. Large reads and
write of file data are especially suited to bulk access operations. Unlike the generally simple and
flat structure of data stores, metadata servers must maintain consistent views of hierarchical files
and directories. In order for a node to to read a file’s data, path resolution is the responsibility of
metadata servers. These lookups and permission checks eventually determine the location where

1

CLUSTERING

the actual data are stored. Efficient path resolution and metadata lookup is thus critical for the
performance of a shared filesystem.

Metadata performance becomes a key bottleneck in most storage systems at extreme scale.
Strategies such as caching, striping, and larger transactions allow for improvements in file data
access. Unfortunately, serving the system’s metadata poses distinct challenges that preclude ap-
proaches used for data access. Metadata elements are small (e.g. user-visible inode information),
require stronger consistency than data, and are accessed through small update transactions rather
than large linear reads and writes. It also becomes difficult to maintain a consistent view of di-
rectory structures among a large number of nodes with (potentially) an extremely large number of
directory entries.

The problem of metadata handling is in the general case extremely difficult to solve. The
consistency semantics of general-purpose filesystems severely limit potential optimizations. The
different ways a shared filesystem is used each require somewhat different semantics. Data passed
between concurrent processes, for example, requires strong consistency at each filesystem interac-
tion. Between sequential processes, filesystem data requires strong consistency eventually. Static
data such as software will not change during the execution of a given task does not require additional
consistency guarantees.

Metadata activity is often extremely unbalanced, as production high performance comput-
ing (HPC) applications generate irregular bursts of metadata access. Application startup is par-
ticularly problematic for the storage system. While researchers often treat HPC applications as
“simple” programs to be launched, the steps required are almost always more complicated. What
appears to be a single “application” may actually be a complex collection of interpreted programs,
dynamic libraries, configuration files, and calibration data. Loading the complete structure of the
application into cluster memory at startup results in tens of thousands of interactions with the
filesystem at each node. When thousands of nodes of the cluster attempt to load the same applica-
tion at the same time, the filesystem must handle thousands of small transactions from each node
before any one can make progress.

For scientific applications specifically, metadata behavior often becomes the limiting factor for
performance. Scientific software is likely to use the shared filesystem in all of the previous ways. A
single application may store intermediate files, synchronize between steps of an analysis, distribute
application software, and collect results from multiple worker nodes. A general-purpose filesystem
must adequately support the strain imposed by each. Efficient handling of common cases such as
software distribution can be the key factor in attempting to scale up an analytic workflow. Poor
choice of filesystem use or missed optimizations will make shared computing resources unusable for
a given researcher, or in some cases for all users of a site.

Thus the goal of this work is to identify “related” parts of the filesystem where optimizations
will have the most impact. By tracing applications, we can observe their filesystem access patterns.
We can then use this linear log of events to express an application’s behavior as a graph. From
there, we identify clusters in the graph as sets of strongly related filesystem entries. Using the
knowledge of these clusters, we can apply optimizations such as local caching and pre-fetching
more effectively. Before starting an application run, for example, we could make a local copy of an
entire cluster of related filesystem entries in one bulk operation. This approach can reduce load on
the overall system without changing the application’s behavior. By choosing clusters effectively, we
can minimize the amount of data copied/transferred/etc. while still maintaining the performance
benefits of optimizations.

To match real-world usage, we would like to be able to process data from multiple application
runs, allowing for additional samples to be added as they become available. We would also like to be
able to get some recommendation even before all runs are completed and processed, because in the

Version 1.0 Page 2

CLUSTERING

extreme case there could be a continuous stream of data with images or cache entries being prepared
periodically based on observed data. This design would require the use of efficient, streaming graph
algorithms.

1.2 The Problem as a Graph

Applications at HPC centers are composed of (a possibly large number of) individual processes.
Running a process requires, at minimum, path search and library loading. It is also common for
processes to search for and read in input, configuration, or calibration data. Some applications use
the shared filesystem as a means to synchronize between components. To allow the application
to recover from failures, checkpoints can be written out as well. Finally, there is usually some
output data flushed to the filesystem. The latter three uses rely on strong filesystem semantics and
consistency guarantees, limiting the optimizations available. The former uses, however, are good
candidates for further examination.

By identifying parts of the filesystem that are used together, for example all of the libraries a
single program loads, it becomes possible to use more target optimizations such as pre-staging a
frequently used subset of static metadata entries on nodes. Unfortunately, determining which parts
of a filesystem are relevant to a particular application is difficult. There is generally a set sequence
of operations for path search, library loading, etc. The exact operations can be non-deterministic
or data dependent, however. Furthermore, each individual process of a complete application has
distinct behavior, though some patterns are likely to be repeated across processes. There is thus
no way to determine a priori which parts of the filesystem an application relies on. It is also
not sufficient to try to identify one or a few “program directories” containing all needed pieces.
Research applications can (and very often do) use creative filesystem organizations that are not
amenable to automatic dependency tracking.

Lacking an a priori method to determine the filesystem dependencies of an arbitrary research
application, it is instead necessary to observe filesystem behavior over multiple application runs. It
is possible to trace the behavior of individual processes using tools like strace to capture syscalls.
Since there is a performance penalty in tracing, it is generally better to trace some fraction of
processes.

Using these process-level traces, the next step is interpreting the sequences of accesses and
choosing groups of related filesystem entries. It is not sufficient to simply collect every filesystem
entry that was accessed. This approach collects broad trees of filesystem entries that in practice
include substantial amounts of irrelevant data. Instead, a better approach would take into account
the fine-grained behavior of the processes. For example, a directory that is listed once during
library search and never accessed again is a poor candidate for optimization. On the other hand,
a set of libraries that are accessed consecutively by every process should be grouped together and
pre-staged on nodes to reduce traffic to the shared filesystem.

To capture both the frequencies and orderings of filesystem accesses, we can build a directed
graph based on the syscall traces of each process. In this representation, filesystem entries are the
vertices of the graph. The events comprising the syscall traces are used to derive edge weights, with
large numbers of accesses resulting in high edge weights. For a process that most recently accessed
filesystem entry A and next accesses B, we increase the edge weight of A → B by one, creating the
edge if it does not exist. This representation includes far fewer vertices and edges than events in
the syscall trace. In addition, it is amenable to streaming updates as new traces become available
or the input data and configuration change.

Version 1.0 Page 3

CLUSTERING

1.3 Some Realistic Data Sets

The strace utility is widely available on Linux based systems, making it possible for researchers
to collect syscall traces from their applications. Aside from the previously mentioned performance
overhead, there is little barrier to profiling as the process does not require changes to the application.
It might be possible to refer to a graph database or to generate synthetic graphs, but simply profiling
the actual application will be more effective. As an example application that researchers actively use
in an HPC context, we collected syscall traces of MAKER [5], a complex bioinformatics application.
Aside from the application itself and its input data, MAKER depends directly or indirectly on an
additional 40 languages and libraries. Each phase of a MAKER analysis uses some subset of these
dependencies and inputs. Over the course of an analysis, MAKER spawns a large number of
individual processes, each of which goes through library loading, input data selection, etc. In our
test run on a small dataset, MAKER performed 1.8 million I/O operations. This run included bursts
of thousands of metadata I/O operations per second. The total running time was 35 minutes. Note
that it is not uncommon for HPC applications to run for hours or even days. A longer-running
application would produce a corresponding increase in the number of I/O operations. For the
following sections, we will explore additional applications and datasets.

Rather than representing each metadata operations directly, the graph representation of the
execution trace aggregates these events into edge weights. Each vertex in the graph corresponds to
a filesystem entry accessed during the run. For this small run, the resulting graph included roughly
25,000 vertices. An analysis on a larger data set or using an application with more dependencies
would result in a larger number of vertices. The graph for this particular run included roughly
130,000 edges. Again, the number of edges and ratio of vertices to edges is strongly dependent
on both the application and the dataset. Since the programs spawned during a MAKER analysis
exhibit both non-deterministic and data dependent behavior, there can also be limited variation in
the properties of the graphs of otherwise identical runs. Streaming events from multiple analysis
runs into the same graph will also result in changes to the graph properties, though it is hard
to predict behavior in the general case over all applications. As general trends, merging multiple
distinct applications into the same graph should result in a largely disconnected cluster for each
application’s activity. Combining analyses of different data sets in the same application should
result in an increased graph size with some core vertices common to all runs. Finally, merging
events from analysis of the same data in the same application should not significantly affect the
properties of the graph.

We also recorded traces for two smaller applications for comparison. The program true is a
standard Unix utility that simply exits successfully without performing any work. As a dynamically
linked GNU program, executing true still results in library search, user lookup, reading locales, etc.
The bash trace records a shell starting up and immediately exiting. In addition to the activities
of true, bash loads a number of configuration files, inspects the user’s home directory, and spawns
several other processes. The sizes of the three traces and the resulting graphs are tabulated below.

Events Nodes Edges

true 47 46 45
bash 5,499 840 1,569

MAKER 1,813,544 24,897 129,153

Here true has the smallest number of events and appears to follow a linear sequence of filesystem
events. Since it consists of multiple process operating in parallel, the trace for bash is less clearly
defined. MAKER, as the largest application traced, includes significantly more events which in

Version 1.0 Page 4

CLUSTERING

turn produce a graph with two orders of magnitude more nodes and edges than the next largest
application.

1.4 CLUSTERING-A Key Graph Kernel

To detect clusters of related filesystem entries, we propose applying hierarchical cluster analysis to
the execution trace graph of an application. Clusters in the graph serve as reasonable groupings
of filesystem entries for partitioning or pre-staging at worker nodes. In addition, the series of
hierarchically-related clusters that results from this analysis allows some flexibility in the granularity
of clusters. When applied to real-world applications, a completely automated approach is difficult
in the general case. Providing a choice in cluster granularity allows the user to apply domain
knowledge to make the best decision while still providing some automated assistance.

To illustrate hierarchical cluster analysis, we use the Girvan–Newman algorithm [6], a well-
studied method. Girvan–Newman repeatedly removes edges from the graph, with the remaining
connected components as the clusters. The edge to be removed each step is chosen based on edge
betweenness, a centrality measure of the number of shortest paths in the graph passing along a
given edge. The underlying assumption is that by iteratively removing non-central edges, you can
gradually cut apart the clusters. The algorithm proceeds until all edges have been removed. Thus
the user can choose precise cluster granularities from individual vertices up to the entire graph.
The algorithm itself (taken from [6]) is given in Figure 1.

Algorithm 1 The Girvan–Newman Algorithm

Require: Graph G = (V,E).
Calculate betweenness g(e) for each edge e ∈ E.
while |E| > 0 do

Remove the edge e with the highest betweenness g(e).
Recalculate betweennesses for all edges affected by the removal.
Identify clusters as connected components in G.

The betweenness can be calculated using [8] in O(mn) time, where m is the number of edges and
n is the number of vertices in G. Since betweenness is calculated at the removal of each edge, the
algorithm runs in O(m2n) time. Determining connected components can be performed in O(m+n)
time. Since only changes to betweenness need to be calculated after the first time, this repeated
computation can be confined to a single connected component rather than the whole graph. One
way to perform this optimization would be to store the set of shortest paths passing through each
edge. On removal, it is only necessary to recompute the shortest paths between the pairs of vertices
in that list. As the clusters become smaller and smaller, in practice this optimization significantly
reduces the computation.

1.5 Prior and Related Work

Several approaches to achieving sufficient metadata performance in shared filesystems have been
explored. One approach is to separate metadata from the parallel filesystem completely. This
approach maps metadata storage tables to file objects in the parallel filesystem [16, 10]. The total
metadata transaction rate of the system is improved, but each client must still make many small
transactions while using the service. Another approach is to introduce new operations that access

Version 1.0 Page 5

CLUSTERING

metadata in bulk or with weaker consistency guarantees. Examples of this include the proposed
getlongdir and statlite system calls [12], which are, unfortunately, not widely implemented.
This reduction in the transaction rate between clients and servers complements other approaches.

1.6 A Sequential Algorithm

The pseudocode given in Section 1.4 is quite simple, but uses several other algorithms as building
blocks. In particular, the Girvan–Newman Algorithm repeatedly computes the edge betweenness,
which itself depends on computing the all-pairs shortest paths of the graph. Thus a framework that
supports a number of common graph algorithms would be best for implementing the algorithm.
The graphs generated from the traces consist only of vertices and directed edges, where edges
have integer weights. Thus any graph language or framework should be able to represent the
generated graphs. Assuming a sparse representation, a good implementation of the Girvan–Newman
Algorithm should match the time complexity given previously.

1.7 A Reference Sequential Implementation

For processing the event logs and the implementation of the Girvan–Newman Algorithm, we chose
Python and NetworkX [7]. Python has good support for text processing and regular expressions,
which are necessary for parsing the text event logs. NetworkX is a Python library for working with
graphs. Conveniently, NetworkX includes an implementation of the Girvan–Newman Algorithm.
Thus the majority of the work is in parsing the event logs and constructing the graph in a way that
NetworkX can use. Each event shows the invoking PID, syscall, its arguments, and the result.

29204 open("/etc/passwd", O_RDONLY|O_CLOEXEC) = 3

For example, this is a single syscall that successfully opened /etc/passwd. These lines were parsed
to find file-related syscalls and determine the path(s) involved. To construct the execution graph,
we simply note the filesystem entry accessed previously and increment the weight of edge to the
entry referenced in the current event, adding this edge if id does not exist. This part was written
as part of the parsing phase and independently of NetworkX, simply storing the edges in Python
data structures. This snippet shows the section of the main loop for building the graph.

for path in EVENTS:

path = path.strip()

if not path in self.paths:

self.paths[path] = self.ctr

self.ids[self.ctr] = path

self.ctr += 1

k = (prev, self.paths[path])

v = self.graph.get(k, 0)

self.graph[k] = v + 1

prev = k[1]

After processing the events of a trace and summing up all edge weights, it is straightforward to
convert the graph to a NetworkX representation.

def to_networkx(self):

G = networkx.Graph()

Version 1.0 Page 6

CLUSTERING

for (k, v) in self.ids.items():

G.add_node(k, path=v)

for ((l, r), v) in self.graph.items():

G.add_edge(l, r, weight=v)

return G

Given a NetworkX graph, finding clusters via the Girvan–Newman Algorithm is as simple as
invoking a function.

G = event_graph.to_networkx()

components = networkx.algorithms.community.centrality.girvan_newman(n)

for comp in itertools.islice(components, depth):

print(tuple(sorted(c) for c in comp))

1.8 Sequential Scaling Results

We used the the Girvan–Newman Algorithm based approach to identify clusters in the three traces
described previously. The tests were run on a machine at the Center for Research Computing (CRC)
at the University of Notre Dame. The machine had an Intel Xeon E5620 CPU with 8 cores and
32 GB of RAM. The machine was running Python 2.7 with NetworkX 2.2 installed locally. The
running times for computing the first round of edge betweenness and the full the Girvan–Newman
Algorithm clustering analysis on the three application traces are tabulated below.

Edge Betweenness Girvan–Newman

true 0.41 s 0.43 s
bash 10. s 290 s

MAKER ?? (> 45 min.) ??

For MAKER, the running time proved to be excessive and computation of the the Girvan–Newman
Algorithm analysis timed out. We also used the times for the first round of edge betweenness to
estimate the time that would be required, but found that even a single step took a large amount
of time and aborted it.

The observed running times appear to be consistent with the time complexity given, but it is
impossible to determine this with any certainty based on two data points. Based on the measured
running times and the graph sizes, we would indeed expect an algorithm with O(|E|2|V |) complexity
to time out. We will save a more definitive complexity analysis for the improved implementation.

1.9 An Enhanced Algorithm

The ultimate objective for this system is to identify clusters in the filesystem as an application
runs, and to easily incorporate additional execution samples to improve the results. Thus a com-
putationally expensive, offline approach is unacceptable. Moving away from the Girvan–Newmann
Algorithm, we instead consider using a streaming algorithm. Rather than first constructing the
graph and then building communities, a streaming community detection would allow us to main-
tain approximate communities as the graph is constructed. In addition, use of a centrality-based
method like Girvan–Newman resulted in significant computational cost. For the smaller traces,
this was an acceptable approach. At the scale of a realistic application, however, the O(|E|2|V |)
time complexity becomes unacceptable. For this application, a decrease in accuracy is acceptable
to obtain a computationally tractable approximation.

Version 1.0 Page 7

CLUSTERING

Thus, we are interested in an approximate method that supports larger scales and is amenable
to a streaming implementation. We chose the Louvain method [3] as our stating point. This
method has been used to quickly detect communities at large scale, and is very performant in
practice. The Louvain method attempts to maximize modularity, a measure of the degree to which
a graph is structured in modules or clusters. Computing the optimal modularity of a graph,
however, is known to be an NP-complete problem [4]. Thus for large graphs, it is necessary to
use an approximation instead. Rather than repeatedly computing edge betweenness for the entire
graph and removing an edge as in Girvan–Newman, the Louvain method combines subgraphs. For
each pass, the algorithm chooses some subgraphs to merge. Since it would be computationally
expensive to identify optimal choices here, the algorithm arranges the subgraphs in a sequence and
only considers merging them with their neighbors. The Louvain method also takes advantage of
the fact that it is easy to compute the change in modularity due to moving an isolated vertex.
To finish the pass, the algorithm constructs a new graph in which the newly produced clusters
are contracted into single vertices. By applying the same steps for a small number of passes, the
Louvain algorithm in practice operates in linear time on commonly encountered sparse graphs. An
evaluation [3] of the method found acceptable performance and accuracy even on graphs consisting
of hundreds of millions of nodes and billions of edges. In addition, the authors found that on all
graphs examined, results converged after five or fewer passes.

1.10 A Reference Enhanced Implementation

For an enhanced implementation of community detection that supports more realistic graph sizes,
we chose to use STINGER [1], a high-performance graph data structure usable as either a library
or through a standalone server. Since existing pieces to parse logs and generate event streams
were written in Python, we chose to run STINGER as a server and feed data to it. This is also
closer to the original goals of the application, i.e. to have a server that provides information on
usage patterns as data become available. STINGER allows asynchronous ingestion of events, so
that for example a trace could run in the background and feed into the STINGER server without
blocking the application being traced. As changes to the graph are incorporated, the STINGER
server maintains an approximate set of communities. At any point in time, it is possible to query
the server to get a current listing of clusters.

The algorithm included with STINGER is based on Louvain’s method, implemented to take ad-
vantage of parallelism when traversing the graph. While the STINGER data structure and the RPC
interface used to communicate with the server are both substantial, the included implementation
of community detection is concise enough to include here.

void community_detection(stinger_t * S, int64_t NV,

int64_t * partitions, int64_t maxIter){

//we need the sum of the total weights in the graph to calculate modularity

double_t m = 0;

STINGER_FORALL_EDGES_OF_ALL_TYPES_BEGIN(S){

m += STINGER_EDGE_WEIGHT;

}STINGER_FORALL_EDGES_OF_ALL_TYPES_END();

//begin by setting each vertex to its own partiton

for (int64_t i = 0; i < NV; i++){

partitions[i] = i;

}

Version 1.0 Page 8

CLUSTERING

int64_t num_partitions = NV;

partitions = louvain_method(S,partitions, NV, m, maxIter);

}

int64_t *louvain_method(stinger_t * S, int64_t * partitions, int64_t size,

int64_t m, int64_t maxIter){

int64_t num_moves;

int64_t num_iter = 0;

do {

num_moves = 0;

num_iter += 1;

for (int64_t i = 0; i < size; i++) {

double_t maxMod = -DBL_MAX;

int64_t label = partitions[i];

STINGER_FORALL_OUT_EDGES_OF_VTX_BEGIN(S, i)

{

double_t modul = modularity(S, i,

STINGER_EDGE_DEST, m);

if (modul > maxMod) {

label = partitions[STINGER_EDGE_DEST];

maxMod = modul;

}

}

STINGER_FORALL_OUT_EDGES_OF_VTX_END();

if (partitions[i] != label) {

//we move the vertex

partitions[i] = label;

num_moves += 1;

}

}

}while (num_moves > 0 && num_iter < maxIter);

return partitions;

}

double_t modularity(stinger_t * S, int64_t vertex_a, int64_t vertex_b, double_t m){

int64_t ka_out = 0;

int64_t kb_in = 0;

int64_t edge_between = 0;

double_t modularity = 0;

STINGER_FORALL_OUT_EDGES_OF_VTX_BEGIN(S, vertex_a){

ka_out += STINGER_EDGE_WEIGHT;

if (STINGER_EDGE_DEST == vertex_b){

edge_between += STINGER_EDGE_WEIGHT;

}

}STINGER_FORALL_OUT_EDGES_OF_VTX_END();

STINGER_FORALL_IN_EDGES_OF_VTX_BEGIN(S, vertex_b){

kb_in += STINGER_EDGE_WEIGHT;

Version 1.0 Page 9

CLUSTERING

if (STINGER_EDGE_SOURCE == vertex_a){

edge_between += STINGER_EDGE_WEIGHT;

}

}STINGER_FORALL_IN_EDGES_OF_VTX_END();

modularity = (edge_between/m) - ((double_t)(ka_out*kb_in)/pow(m,2));

return modularity;

}

1.11 Enhanced Scaling Results

Compared to the Girvan–Newman approach, we observed marked performance improvement with
STINGER’s parallel community detection based on the Louvain method. This modularity-based
algorithm was also more usable as it allows streaming updates to the graph, with current communi-
ties listed on demand. In all cases, there was a constant amount of time required to start the server,
prepare memory allocations, register components, etc. This was not included in the computation
times listed. Since STINGER uses a streaming computation model for this algorithm, processing
events and updating the graph is inextricably linked with the algorithmic computation. In the table
below, “Event Ingestion” refers to the time required to stream the complete stream of events for the
application to the STINGER server. This is an asynchronous process, so the ingestion completes
while the server performs computation in the background. “Community Detection” includes both
additions/updates to edges and the community detection proper.

Event Ingestion Community Detection

true 0.01 s 0.01 s
bash 0.01 s 0.01 s

MAKER 0.8 s 197 s

1.12 Conclusion

In this work, we sketched a graph-based description of filesystem access patterns for scientific appli-
cations. With suitable choices for algorithms and approximations (and efficient implementations),
we computed hierarchical communities among filesystem entries based on event streams captured
during application runtime. STINGER’s modularity-based community detection implementation
gave a computationally tractable approximation. In addition, it was fast enough to process an
event stream in step with the live application. As future work, we would like to use the com-
puted community information as part of the application pipeline, e.g. to pre-fetch cache contents
on worker nodes. This information would be useful in enforcing more organized IO patterns in
large distributed scientific applications.

1.13 Response to Reviews

In response to reviews, we fixed a number of errors that were pointed out. We also elaborated on
computing partial updates mentioned in the pseudocode. One of the reviews found the introduction
to be poorly organized, so we rearranged and reworded pieces there. The reviewer was also not
clear on the objectives, so we expanded the explanation there.

Version 1.0 Page 10

Bibliography

[1] David A Bader, Jonathan Berry, Adam Amos-Binks, Daniel Chavarŕıa-Miranda, Charles Hast-
ings, Kamesh Madduri, and Steven C Poulos. Stinger: Spatio-temporal interaction networks
and graphs (sting) extensible representation. Georgia Institute of Technology, Tech. Rep, 2009.

[2] R. Behrends, L. K. Dillon, S. D. Fleming, and R. E. K. Stirewalt. White paper: Lustre
file system high-performance storage architecture and scalable cluster file system. Technical
report, Sun Microsystems, Menlo Park, California, December 2007.

[3] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008.

[4] U Brandes, D Delling, M Gaertler, R Goerke, Martin Hoefer, Z Nikoloski, and D Wagner.
Maximizing modularity is hard. Technical report, University of Konstanz, Germany, 2006.

[5] M. S. Campbell, C. Holt, B. Moore, and M. Yandell. Genome Annotation and Curation Using
MAKER and MAKER-P. Curr Protoc Bioinformatics, 48:1–39, Dec 2014.

[6] M. Girvan and M. E. J. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12):7821–7826, 2002.

[7] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2008.

[8] M. E. J. Newman. Scientific collaboration networks. i. network construction and fundamental
results. Phys. Rev. E, 64:016131, Jun 2001.

[9] Inc. Red Hat. Gluster. http://www.gluster.org/, 2017. Accessed 2018-09-28.

[10] K. Ren, Q. Zheng, S. Patil, and G. Gibson. Indexfs: Scaling file system metadata perfor-
mance with stateless caching and bulk insertion. In SC14: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 237–248, Nov 2014.

[11] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop dis-
tributed file system. In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Sys-
tems and Technologies (MSST), MSST ’10, pages 1–10, Washington, DC, USA, 2010. IEEE
Computer Society.

[12] Murali Vilayannur, Samuel Lang, Robert Ross, Ruth Klundt, Lee Ward, et al. Extending the
posix i/o interface: A parallel file system perspective. Argonne National Laboratory, Tech.
Rep. ANL/MCS-TM-302, 2008.

11

CLUSTERING

[13] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn. Ceph:
A scalable, high-performance distributed file system. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages 307–320. USENIX Association, 2006.

[14] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller, Jason Small, Jim
Zelenka, and Bin Zhou. Scalable performance of the panasas parallel file system. In Proceedings
of the 6th USENIX Conference on File and Storage Technologies, FAST’08, pages 2:1–2:17,
Berkeley, CA, USA, 2008. USENIX Association.

[15] Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin, Scott Klasky, Sarp Oral, and Norbert
Podhorszki. Characterizing output bottlenecks in a supercomputer. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis,
SC ’12, pages 8:1–8:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[16] Q. Zheng, K. Ren, and G. Gibson. Batchfs: Scaling the file system control plane with client-
funded metadata servers. In 2014 9th Parallel Data Storage Workshop, pages 1–6, Nov 2014.

Version 1.0 Page 12

