
Chapter 1

Jaccard Coefficients

Contributed by Neil Butcher

1.1 Introduction

Jaccard Coeffcients is a proposed High Performance Computing (HPC) metric that is used in a wide
variety of real world applications. The Jaccard metric is designated as a way to define similarity
between the neighborhood of two nodes. The Jaccard metric was originally introduced as a way
to detect communities in botanical species [3]. This idea has been further expanded to other
community detection algorithms[5] [1] [5], and well as other purposes. The Jaccard coefficient has
been used by Wikipedia [2] to determine the relationship between web-pages based upon common
authors of pages.

The example in figure 1.1 shows a problem that is best solved by using Jaccard coefficients.
Suppose a insurance company is attempting to determine reliability of a person, as well as people
they cohabitate with. In order to do this they have to determine the shared addresses. This can
easily be represented as a Jaccard computation when configuring the graph in a manner similar to
what is shown in the figure. [4]

1.2 Basic Definition

The Jaccard coefficient is quite simple. Given a pair of vertices U and V we represent Jaccard as
the intersection of the neighborhoods of U and V, divided by the union of the neighborhoods of the
two vertices. From a computational standpoint most work comes from computing the intersection
of U and V. This is because to compute the union you can simply take the size of the neighborhoods
and subtract by the intersection, as to not count the same vertex twice.

For examples look at 1.2. The figure shows a simple graph in which it is easy to demonstrate
Jaccard computations. For example we demonstrate how to compute the Jaccard for vertex A and
vertex D. The intersection of their neighborhoods is the single node, vertex B. The size of the union
is two, nodes C and B. Note that despite that both A and D are neighbors of B, we only count B
as one node in the union. This makes the Jaccard value 1/2. This simple example demonstrates
the computation needed to compute a Jaccard value.

1



Jaccard Coefficients

1.3 How to Compute Jaccard

The most obvious way to compute the Jaccard coefficient is to just brute force compare all the
neighborhoods of all pairs of vertices. This of course will have a rather large complexity. This can
be simplified greatly by first computing all of the two hop paths from each vertex. If two vertices
don’t contain a two hop path then their Jaccard coefficient will be zero, since there intersection
must the empty. Given two hop paths simplifies the amount of work you have to perform, especially
in a sparse matrix.

The problem of computing a single Jaccard coefficient is as stated earlier, is a problem of
computing the intersection of two nodes. Computing the intersection of two nodes is essentially
just comparing two lists and looking for common intersection. This becomes much simpler if the
lists are sorted, based off vertex number. This reduces the amount of work required to compute the
intersection by a factor of M, where M is the average out-degree of vertices. Finding the intersection
of a two sorted lists is obviously easier, because it only requires going through both lists once. If
the list is not sorted it becomes more complicated because you have to check all pairs in the lists
and is N squared comparisons.

The complexity of computing Jaccard in this way is fairly straightforward. If just computing
a single Jaccard element we have to at least do O(M) work assuming the list is already sorted. If
we have to sort the lists first the work is O(MlogM) since that is the complexity of sorting. The
last options is to just not sort the lists and that results in a O(M2̂) complexity. This is obviously
the worst case, however the constant from sorting a fairly short list may not be worth the cost in
a real application.

Jaccard can also be computed by using the Graph Basic Linear Algebra Subroutines (Graph-
BLAS). The GraphBLAS library is a simple C interface that represents graphs as matrices and
performs matrix operations to perform graph algorithms. Jaccard is a clear candidate for Graph-
BLAS, since it can compute the intersection of a list of nodes by multiplying the graph by itself.
This results in entries that represent the intersection of the vertices that the rows/columns repre-
sent. This implementation is straightforward and has a potential to be highly parallelized.

1.4 Parallizing Jaccard

There are a wide variety of problems the can utilize the structure of a Jaccard coefficient. Since each
Jaccard coefficient can be computed independently of the other, parallelizing the computation is
fairly straightforward. There however can obviously be multiple caveats to computing the Jaccard
coefficient. One simple and effective way to parallelize the computation is the use Hadoop Map-
Reduce algorithms.

1.5 Real World Data Sets

In conducting experiments to observe the performance characteristics of different Jaccard algo-
rithms there are a wide variety of data sets to choose from. The simplest choice is the RMAT
graphs. These graphs are a dramatic simplification of real world problem, but are easy to demon-
strate strong scaling behaviour. The RMAT graphs are artificial graphs produced for benchmarks,
most notably Graph500. This makes RMAT graphs an interesting data point because one of the
goals of developing Jaccard codes is to implement in as a benchmark alongside the BFS benchmark
in Graph500.

Version 1.0 Page 2



Jaccard Coefficients

Jaccard was initially developed as a community detection metric. This makes it an obvious
candidate for graphs with clear and noticable communities. Previous work computes the similarity
between Wikipedia pages. These data sets are available and make an obvious comparision point
for any new work that is performed. There are also many other SNAP datasets that exist that
have many clearly defined networks and make a useful point of comparison.

1.6 Next Steps

There are a wide variety of Jaccard algorithms that exist, many of them are quite clever. The goal
of coming up with a new way of improving how parallel the computation is of great interest. The
paper shows a great deal of work in computing triangle counting while keeping the working sets
minimal. We think it would be interesting to adapt their algorithm towards Jaccard and tailor it
towards to utilize the multi-channel DRAM (MCDRAM) found in Intel’s Knight’s Landing chip
as well as perhaps GPU algorithms. We think that adapting this triangle counting algorithm will
require careful consideration but will provide benefit when implemented correctly.

Version 1.0 Page 3



Jaccard Coefficients

Figure 1.1: Example in which Jaccard Computations a relevant

Figure 1.2: Small graph with simple Jaccard computations

Version 1.0 Page 4



Bibliography

[1] Brian Ball, Brian Karrer, and Mark EJ Newman. Efficient and principled method for detecting
communities in networks. Physical Review E, 84(3):036103, 2011.

[2] Jacob Bank and Benjamin Cole. Calculating the jaccard similarity coefficient with map reduce
for entity pairs in wikipedia. Wikipedia Similarity Team, pages 1–18, 2008.

[3] Paul Jaccard. The distribution of the flora in the alpine zone. 1. New phytologist, 11(2):37–50,
1912.

[4] Peter M Kogge. Jaccard coefficients as a potential graph benchmark. In Parallel and Distributed
Processing Symposium Workshops, 2016 IEEE International, pages 921–928. IEEE, 2016.

[5] Chayant Tantipathananandh, Tanya Berger-Wolf, and David Kempe. A framework for com-
munity identification in dynamic social networks. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’07, pages 717–726,
New York, NY, USA, 2007. ACM.

5


