
Chapter 1

Graph Pair Similarity

Contributed by Justin DeBenedetto

1.1 Introduction

Abstract Meaning Representations (AMRs) are a way of modeling the semantics of a sentence. This
graph-based structure focuses on capturing the concepts involved in a sentence and their relations
to each other in order to provide a semantic representation. As such, an AMR graph has node labels
corresponding to concepts and directed edge labels corresponding to relations between concepts.
Both the set of concept labels and the set of edge labels come from PropBank [4]. The design of
AMRs provide single-rooted directed acyclic graphs (DAGs)

An example AMR can be seen in Figure 1.1. The edge labels seen in this example are ‘ARG0’
which represents the semantic role of agent and ‘ARG1’ which represents the semantic role of
patient. In this example, six words in the source sentence become four nodes in the AMR graph. It
is common for the number of nodes to be smaller than the number of words in the source sentence
for a variety of reasons including ‘to believe’ being captured by a single concept node and both
‘John’ and ‘him’ referring to the same entity, thus sharing a single concept node. While each AMR
graph is produced from a single source sentence, many different source sentences may produce the
same AMR graph. This is intentional, since the same meaning (captured by the AMR) can be
conveyed in various ways (captured by the source sentence(s)).

There are several tasks which are of interest to the community when it comes to working with
AMRs. Two of the most central tasks are:

want

believe

Mary John

ARG1

ARG0 ARG1

ARG0

Figure 1.1: Example AMR for the sentence “John wants Mary to believe him.”

1

GPS

• Generating an AMR from a source sentence

• Generating a sentence from an AMR

Digging further into the task of generating an AMR, since we want to do this automatically, we
must have some criteria for what makes a “good” AMR. A common way to approach this problem
is to provide humans with source sentences and have them produce the AMRs. Then, train the
computer to automatically produce AMRs using the human generated training data. Critical to
this process is the ability to score the similarity between two AMR graphs to give the computer a
sense of how close its AMR is to the one that we believe to be correct.

When the computer generates a candidate AMR for scoring, it generates multiple candidates
at once. The top n candidates according to the computer model will then be scored against the
correct AMR. This list of candidates is referred to as an n-best list. We target scoring these n-best
lists throughout this work.

1.2 The Problem as a Graph

AMRs are constructed as graphs as described in Section 1.1 and as shown in Figure 1.1. When
processing AMRs, multiple options exist in terms of how to scale or parallelize applications. Since
each individual AMR is relatively small (see Section 1.3), it is common to view many AMRs
together as a single graph with many distinct connected components. In our task of scoring graph
pair similarity, it likely makes more sense to leave each AMR as a separate graph and try to take
advantage of the natural parallelism opportunities offered by having distinct graphs.

1.3 Some Realistic Data Sets

The dataset that I am using throughout this work comes from the Linguistic Data Consortium
(LDC) and is available for download online1. The source sentences are all in English and come
from various sources including newswire, discussion forums, and television transcripts. All AMRs
are produced by hand by trained linguists and are thus accepted as reliable. Data and statistics
presented here come from the general release 1.0 and include 10, 312 AMRs. There is a newer
general release which is approximately three times larger which may be used if version 1.0 becomes
insufficient.

The average number of nodes for each AMR in our dataset is 17.10 and the average number of
edges is 17.07. More than 50% of the AMRs in this dataset are trees. The node and edge count
distributions can be seen in Figures 1.2 and 1.3.

Given that our focus in this work is scoring graph pair similarity, we can easily generate artificial
but realistic data by adding new nodes and edges drawn from PropBank [4]. These AMRs would
not necessarily represent intelligible sentences, and thus are not usable for most AMR purposes,
but would be viable AMRs for scoring similarity of larger graphs. To make this artificial data closer
to real English sentences, we can first establish some grammar extracted from the real AMRs which
determines a set of possible rules for how each node type and edge type can be combined. Looking
at Figure 1.1, this process could be as simple as finding that node label ‘believe’ can have out edges
‘ARG0’ and ‘ARG1’, so if we ever generate ‘believe’, give it those out edges and find candidate
nodes which could use ‘ARG0’ or ‘ARG1’ as in edges.

While these artificial AMRs may be useful for testing at scale, they would theoretically corre-
spond to very long sentences. Since sentences of these lengths are unlikely to appear in practice,

1https://amr.isi.edu/download.html

Version 1.0 Page 2

GPS

Figure 1.2: Distribution of number of AMRs with given number of nodes.

Figure 1.3: Distribution of number of AMRs with given number of edges.

Version 1.0 Page 3

GPS

generating a larger number of smaller AMRs is more closely related to what we expect to happen to
real datasets in the future. There are off-the-shelf English sentence to AMR parsers which can also
be used to get more realistic data. Once again, how close the produced AMRs are to the original
English sentences is not a problem for our task of measuring performance of graph pair similarity
scoring.

To obtain n-best lists for scoring, we can either attempt to extract them from existing AMR
generators or we can perform some random modifications to the correct AMR. The second approach
could be achieved by rewiring existing edges, adding or subtracting edges, and modifying the node
and edge labels. This task would be simple and fast and can easily be adapted to produce n-best
candidates which are close to or far from the correct AMR.

1.4 GPS-A Key Graph Kernel

For this work we are focused specifically on the task of scoring the similarity of a pair of graphs.
There are many ways in which this is done in practice and we briefly discuss two of them here
before elaborating on the one specially suited to our AMR application.

Degree distribution measures the number of nodes with a given degree in each graph. These
can then be compared to find a measure of similarity. In our directed case, this can be further
split into in-degree and out-degree distributions. This is commonly used for measuring similarity
of graphs, especially randomly generated graphs. However, given that more than half of our AMRs
are trees, this is not a very informative similarity measure for us.

Graph diameter is measured as the maximum distance between any pair of vertices. This can
be used as another topological measure of how similar two graphs are to each other. This can
once again be thought of in a directed or undirected manner, but it does require that every node is
reachable from every other node, so it is more likely to be defined only for the undirected case. Once
again, this measure is not highly applicable in our case due to the small nature of our individual
AMR graphs.

While there are many other such measures that we could discuss here, one that is standard for
use on AMRs given their labeled nodes and edges is called SMATCH [1]. SMATCH is short for
semantic match and was developed specifically to handle scoring the similarity between two semantic
representations. The first step is to break an AMR graph into triples which capture either the node
labeling or the edge labeling and end points. For our example AMR seen in Figure 1.1 we get the
following triples:

• instance(a, want)

• instance(b, believe)

• instance(c, Mary)

• instance(d, John)

• ARG1(a, b)

• ARG0(a, d)

• ARG0(b, c)

• ARG1(b, d)

Version 1.0 Page 4

GPS

Note that each “instance” is a node which is assigned an alignment (a-d) and its node label. Each
edge exists in the form edge-label(node-start, node-end) using the alignment (a-d) for node-start
and node-end. The reason for including the alignment of a-d is because aligning two AMRs can be
non-trivial. By encoding the nodes as a-d, we can now do the same to another AMR and align a
to a, b to b, etc in order to score them.

Once we have the AMRs in this format, we evaluate the precision, recall, and F1 score of each
possible alignment of nodes between the two AMRs. Precision is measured as the number of correct
triples divided by the number of triples in the candidate AMR. Recall is measured as the number
of correct triples divided by the number of triples in the correct AMR. F1 score is then computed
as the average of precision and recall.

The SMATCH score is equal to the largest F1 score obtainable by any alignment of nodes. Note
that if AMR1 has x nodes and AMR2 has y nodes then the number of aligned nodes is min(x, y).
Each node in the smaller AMR is aligned to exactly one node in the larger AMR with no repeats.

A basic implementation of SMATCH can be seen in the following pseudocode:

Algorithm 1 Basic SMATCH pseudocode

1: procedure getSMATCH(a,b)
2: maxF1← 0
3: for mapping in nodeMapping(a,b) do
4: correct← 0
5: for alignedPair in mapping do
6: if labels match then
7: correct← correct + 1

8: for edges in a do
9: replace end-points with aligned nodes from b

10: if new edge exists in b then
11: correct← correct + 1

12: precisionDenominator ← number of triples in b
13: recallDenominator ← number of triples in a
14: precision← correct/precisionDenominator
15: recall← correct/recallDenominator
16: f1← (recall + precision)/2
17: if f1 > maxF1 then
18: maxF1← f1

19: return maxF1
20: procedure nodeMapping(a,b)
21: allAlignments ← empty
22: for nodea in a do
23: for nodeb in b do
24: newAlignments ← align nodea to nodeb
25: newA← a− nodea
26: newB ← b− nodeb
27: newAlignments ← nodeMapping(newA, newB)
28: append newAlignments to allAlignments

29: return allAlignments

An implementation based on this pseudocode would have complexity of O(N !|N + E|) for

Version 1.0 Page 5

GPS

each pair of graphs being scored. In our envisioned application, we score each candidate from
an n-best list against the correct AMR. The complexity for scoring an n-best list would then be
O(N !|N + E|n).

1.5 Prior and Related Work

The original paper which introduced SMATCH[1] focused on speeding up the implementation by
using heuristics. The main idea was to trade some accuracy in SMATCH score for a much larger
speedup in runtime. There were two main heuristics which they implemented and tested. The first
way was to use integer linear programming to solve a constrained version of SMATCH scoring.
The second way utilized a hill-climbing scheme to move from random node mappings to ones that
would likely increase the F1 score until they could no longer find a similar candidate mapping with
a higher score.

There has also been a lot of recent research on AMRs and their applications. Some of this
research includes parsing AMRs [2, 6], biomedical applications of AMRs [5, 7], and obtaining
AMRs in other languages [3]. Parsing methods include both neural and non-neural approaches,
with more of a push toward neural approaches in recent years. Obtaining AMRs in other languages
has been an ongoing effort, but currently datasets are only widely available in English and Chinese.

Version 1.0 Page 6

Bibliography

[1] Shu Cai and Kevin Knight. Smatch: an evaluation metric for semantic feature structures.
In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), volume 2, pages 748–752, 2013.

[2] Chunchuan Lyu and Ivan Titov. Amr parsing as graph prediction with latent alignment. arXiv
preprint arXiv:1805.05286, 2018.

[3] Noelia Migueles Abraira. A study towards spanish abstract meaning representation. 2017.

[4] Martha Palmer, Daniel Gildea, and Paul Kingsbury. The proposition bank: An annotated
corpus of semantic roles. Computational linguistics, 31(1):71–106, 2005.

[5] Sudha Rao, Daniel Marcu, Kevin Knight, and Hal Daumé III. Biomedical event extraction
using abstract meaning representation. BioNLP 2017, pages 126–135, 2017.

[6] Lai Dac Viet, Nguyen Le Minh, and Ken Satoh. Convamr: Abstract meaning representation
parsing. arXiv preprint arXiv:1711.06141, 2017.

[7] Yanshan Wang, Sijia Liu, Majid Rastegar-Mojarad, Liwei Wang, Feichen Shen, Fei Liu, and
Hongfang Liu. Dependency and amr embeddings for drug-drug interaction extraction from
biomedical literature. In Proceedings of the 8th ACM International Conference on Bioinformat-
ics, Computational Biology, and Health Informatics, pages 36–43. ACM, 2017.

7

