Chapter 1

Analyzing Neural Network
Optimization with Gradient Tracing

Contributed by Brian DuSell

1.1 Introduction

Neural networks have led to state-of-the-art results in fields such as natural language processing [3]
and computer vision. However, a persistent shortcoming of neural networks is their lack of inter-
pretability. That is, although neural networks often outperform other machine learning techniques
when trained to solve a task, it is typically impossible to draw out an intuitive explanation for
the solution that the network learns from its complex network of connections. Research has been
increasingly focused on developing specialized neural network architectures which include compo-
nents that impose an inductive bias on the model that is particularly suited to the task at hand,
and additionally may lead to more interpretable solutions. For instance, recent neural machine
translation models have made heavy use of “attention” mechanisms, whereby a model learns to
translate a sentence word-by-word by focusing attention on select source words at each step [1].

Adding specialized components to a network typically has one or more of the following purposes:
(a) to increase the network’s modeling power, (b) to make the network more feasible to train, and (c)
to make some aspect of it inherently interpretable. Stack RNNs, Queue RNNs, and Neural Turing
Machines are all examples of adding stack, queue, or tape data structures to a recurrent neural
network (RNN) in order to increase its modeling power, allowing it to learn algorithmic solutions
that generalize to sequences much longer than those encountered during training [4, 7, 5|. Long
short-term memory networks (LSTMs) and gated recurrent units (GRUs) are specifically designed
to address trainability issues of RNNs [6, 2|. Finally, the aforementioned attention mechanism
produces readily interpretable alignments between words in a source and target sentence.

In this chapter, we explore the effect of neural network components on trainability with a
graph-traversal technique dubbed “gradient tracing,” whereby we analyze the flow of gradient
during backpropagation — the procedure whereby neural networks are trained — through those
components. Our goal is to analyze the extent to which certain components influence parameter
updates and facilitate learning.

GT

1.2 The Problem as a Graph

We can model the training of a neural network as the propagation of error through a directed acyclic
graph (DAG) known as a computation graph. Neural network components exist as subgraphs of this
computation graph. By examining the amount of gradient that flows through a particular neural
network component, we can measure its influence on the network’s parameters during training. We
first review gradient descent for neural networks and then relate this to the propagation of gradients
through the computation graph.

Neural networks are typically trained by minimizing a loss function on a set of training data
using some form of gradient descent algorithm. A neural network is defined by a set of learnable
parameters and a function that uses those parameters to map input data to some desired output. We
denote the parameters as the vector 0; the parameters often represent the strengths of connections
between activation units. The function which makes use of the parameters defines the architecture
of the network. The model is “trained” in the sense that its parameters are adjusted so that
its predicted outputs better fit the desired outputs, where the notion of “fit” is defined by a
loss function that decreases when the predicted and desired outputs match. Gradient descent
automatically optimizes the model by repeatedly computing the gradient of the loss function with
respect to 6 and nudging 6 in the opposite direction by a small amount. We can express this as the
following update rule:

0 =0 —nVoL(f(x;0),9) (L1)

where 7 is a learning rate, f is the neural network (i.e., a function of some input x parameterized
by 0), ¥ is the desired output of the network, and L is the loss function quantifying the dissimilarity
between the predicted and desired output. Note that the use of the gradient restricts the functions
L and f to functions that are differentiable with respect to 6.

Backpropagation is the name of the specific algorithm for computing the gradient of L with
respect to 0, although it can be used for any differentiable function. The task is to compute the
gradient of L with respect to 6 for a constant x and §. In the case of a multi-layer feed-forward
network, the process of computing this gradient can be viewed as the propagation of error from the
loss function backward through the layers of the network, updating connection weights in proportion
to the amount that they increased the loss function when applied to x and y. The gradient function
can be programmed manually or computed using “auto-differentiation,” which exploits the chain
rule of calculus to automatically compute gradients of complex functions using the gradients of
simpler functions. Indeed, several popular neural network libraries, such as PyTorch and DyNet,
are based on auto-differentiation.

Given a specific x and §, any neural network, including recurrent models, can be unrolled into
a computation graph. A computation graph is a representation of the mathematical operators
that define the neural network and loss function as an abstract syntax tree. The leaves of the
tree correspond to constants or learned parameters, and interior vertices represent functions on
sub-expressions; the root vertex is the top-most operator of L, which we denote ¢. Edges between
vertices correspond to the usage of expressions as function arguments higher up the tree. Since
sub-expressions can be shared, the “tree” is actually a graph in the general case. Additionally,
since it is a representation of a mathematical expression, it is always acyclic, forming a DAG.

The chain rule of calculus for functions of one real variable z is

2 Hgla) = o)) gx) (12)
This rule states that the derivative of a composite function f(g(x)) can be computed automatically
given that the function f’ is known. For more complex cases where g is also a composite function,
Version 1.0 Page 2

GT

the rule can be applied recursively. This principle generalizes to functions of multiple variables,
where the rule takes the form

0

. % g (13)

a$¢

= 3 JiE6) () (14)
k (2

f(g(x)) =Vf(gx))-

where f is the kth element of V f. Auto-differentiation applies this rule recursively, “propagating”
the gradient from the root vertex for the loss function back to the vertices for the parameters of
the network in topological order. Backpropagation computes the values VL for each function f
in the computation graph. Backpropagation is complete when it reaches all of the (leaf) vertices
for the parameters 6, at which point it has computed the needed values of VL.

We can express backpropagation as an operation on a computation graph G = (V, E). Let
each vertex u € V be a mathematical operator with derivative u’; the subtree rooted at the vertex
represents a function U of the parameters 6. Let each edge (u,v) € E indicate that the output
of operator v is used as an input to operator u. Suppose that the output of every operator u has
already been computed during a “forward” pass through the network and is available as ¢,. For
each parameter 6;, let the weight w;(u,v) of edge (u,v) be defined as

w;(u,v) = ul(cy) (1.5)

Let g, be the gradient of L with respect to the function U whose subtree is rooted at vertex/operator
v. The backpropagation graph kernel consists of computing

9o =VyL = Z w(u, v)gy (1.6)
(u,v)eE

for all v € V' as necessary to compute gg, for each ¢;. In the base case, g, = 1.

Finally, the goal of gradient tracing is to identify which paths through G, and thereby which
architectural components in the network, contribute most to the parameter update VyL. For a
given #;, this is done by starting at the vertex for 6; and greedily traversing edges with the weight
with the greatest absolute value until reaching ¢. Let us denote the most influential parent operator
on operator v as t,. This simply corresponds to the term in Equation 1.6 with the greatest absolute
value. The gradient tracing graph kernel computes

ty = argmax |w(u, v)gy| (1.7)
u|(uw)EE

for all v € V necessary to connect a path from 6; to £.
We deem a component C, a subgraph of G, to have more influence on #; when the gradient
tracing path passes through C' for more (x,y) pairs.

1.3 Some Realistic Data Sets

We can extract a computation graph from any neural network architecture being trained on any
data set. Indeed, the results of gradient tracing may differ depending on the data set and task at
hand, even for the same network architecture.

Suppose that we are training an RNN language model on the Penn Treebank corpus, which
contains some one million words. A model of modest size might have a vocabulary size of 10,000
Version 1.0 Page 3

GT

words and 1,000 hidden units. This would result in roughly 2.1 million parameters and 30 x n
million edges in the computation graph, where n is sequence length.

Neural network computation graphs typically consist of a series of fully-connected layers of neu-
rons, resulting in sparse graphs with very dense sub-regions. In practice, the length of the gradient
tracing path is likely to be far shorter than the number of vertices and edges in the computation
graph. Indeed, in a simple multi-layer feed-forward network, its length will be proportional to the
number of layers.

To evaluate the effectiveness of gradient tracing in identifying important components of a neural
network, we can generate networks which connect multiple components together in competition,
then ablate the most- or least-influential components and observe whether the number of samples
that the model requires to solve the task increases or decreases accordingly. For instance, in the
context of language modeling, we might run an RNN, LSTM, and GRU on the same input sequence
x in parallel and average their outputs together. We ablate whichever component has the least
influence during training, then the second least, and so on, verifying that the dip in performance of
the model on the given task is proportional to the importance of the removed component. For more
comprehensive testing, we can randomly sample artificial neural network architectures by plugging
components together using random graph generators.

1.4 GT-A Key Graph Kernel

The gradient tracing graph kernel is given in Algorithm 1. The procedure presumes that back-
propagation has already been run on the computation graph G, and that w(u,v) and g, have been
computed for all u,v € V.

Note that this algorithm simply traverses the DAG from one of its leaf nodes to its root; its
time complexity is O(|V| + |E|). For a model with k parameters, the procedure will need to be
repeated k times, resulting in O(k(|V| + |E|)).

Algorithm 1 Gradient tracing
1: procedure GRADIENTTRACING(G, §;) > G is a computation graph with root vertex ¢, 6; is a
parameter
p < an empty path
V£ 91
while v # ¢ do

v 4— argmax |w(u, v)gy|
u|(u,w)EE
append v to p

2

T return p

Version 1.0 Page 4

Bibliography

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473, 2014.

Junyoung Chung, Caglar Giilgehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014.

Yoav Goldberg. A primer on neural network models for natural language processing. CoRR,
abs/1510.00726, 2015.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401,
2014.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning
to transduce with unbounded memory. CoRR, abs/1506.02516, 2015.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735-1780, November 1997.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented re-
current nets. CoRR, abs/1503.01007, 2015.

