Chapter 1

Graph Based Genetic Algorithms

Contributed by Kyle M.D. Sweeney

1.1 Introduction

Genetic Algorithms are fundamentally a searching algorithm for finding “good” solutions when
the solution space is excessively large. Many problem spaces, such as NP-Hard or NP-Complete
problems, are difficult because the possible solution space grows exponentially as the input size of
the problem increases. Consequently, there are no guaranteed easy solutions that can be found in
reasonable time. Searching algorithms, such as Simulated Annealing and Genetic Algorithms look
to nature to find methods of finding reasonably good solutions. In the case of Genetic Algorithms,
solutions are found by simulating evolution, pursuing a survival of the fittest approach.

Let’s take the classic travelling salesman problem [4] where a saleswoman would like to travel
from city to city, visiting each city only once, and taking the shortest route. The problem is
classically known to be NP-Hard. There are N! possible combinations of routes to search through.
To solve the problem as a genetic algorithm, we can imagine the solution, an ordered list of cities,
to be like “DNA”, and each city is a gene. When organisms breed, they swap genes, and thus
produce new, unique children which may or may not be fitter. Genetic Algorithms require a fitness
function in order to sort out which solutions are moving towards a “good” solution, and are better
than other solutions. In this case, the fitness function is the cost of the trip, given the ordered list
of cities. In each generation, we produce a certain number of children from the solutions in the
specimen pool, add them to the pool, and then only keep a certain number which are most fit,
according to the fitness function. Eventually, we choose to stop, and the most fit function is our
“good” solution.

Of course, while exploring the natural extrema of the solution space, it’s possible for our solu-
tions to get stuck around a local extrema. What this means is that our solution specimens have
become too homogenized, and there’s not enough unique variations to choose from. In genetic
terms, there’s not enough genetic variation. One possible solution to solve this is via mutations.
By introducing mutations during the breeding stage, solutions can jump from one area of the solu-
tion curve to another, ideally pulling the rest of the gene pool away from a local extrema, and back
on the path towards a better, more optimal solution. But this genetic variation has to be carefully
controlled. Too much mutations, and the pool can never stabilize and never travel along the curve.
Too little, and mutations don’t introduce enough variability.
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1.2 The Problem as a Graph

The problem of shrinking genetic variation can be partially solved by mutations, but can also be
solved by the introduction of graphs into the problem space. In nature, the same species can
be found in multiple places around the world, yet are still breed-able with one another. These
groups are genetically similar to one another, and distinct from their cousins in different pockets in
different environments. For the purposes of solving a problem like the traveling salesman, we can
employ graphs to take advantage of community isolation while permitting limited genetic-crossover.
Ideally, this means that each sub-group will develop a unique solution and by crossing over, they
can help push the other groups towards more optimal solutions. The effectiveness of this approach
in speeding up/improving solutions comes from a combination of the right kind of graph for the
problem being solved.

1.3 Some Realistic Data Sets

To demonstrate integrating graphs as helpers in genetic algorithms, the rest of this chapter will
focus on the application of Genetic Algorithms in finding ideal complementary codon-sequences to
generate protiens in non-human cells at human-rates.

Every protein is comprised of Amino Acids, built inside of cells according to DNA [3]. Inside of
a DNA strand, three nucleotides are strung together to form a codon, which then codes for either a
specific amino acid, is a stop marker, or is a start marker. Each codon is used with a certain amount
of frequency, and these frequencies are species specific. Work done by Clark et al. [2] discuss the
implications of these frequencies, and work done by Rodriguez et al. [1] demonstrates an algorithm
for harmonizing DNA sequences between humans and a targeted species. These papers discuss a
method, where given a DNA sequence, and the frequencies for different species, a series of scores for
each codon, based off of those frequencies. These scores can be seen as a function over the codon
positions. While the same protein is constructed from each sequence, the “human” function and
“bacteria” function could be very different. Harmonizing the DNA, in this case, means altering
which codons are chosen in the bacteria so that the resulting “bacteria” function will be as similar
to the “human” function as possible.

Solving this harmonization problem via genetic algorithms can be done by imagining the solution
space as the chosen sequence of codons which still produce the same protein. The fitness function
would then be the difference in the area between the two functions when plotted out. By minimizing
the distance between the two functions, a harmonization can be accomplished.

1.4 Graph Based Genetic Algorithms-A Key Graph Kernel

When we apply graphs to isolate the breeding pairs of each potential solution, we perform a sort
of graph “kernel” by traversing the graph to each of the neighbors from every node. The rough
psudeo-code looks something like 1. For each vertex in the graph, breed it with every neighbor
that it has. Of all these children, the most fit one will replace it after breeding has finished. Thus,
in every round, only the most fit specimens remain.

The evaluation of this would be to test this algorithm on different graphs, measuring for speed
and best solution score.
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Algorithm 1 Graph Based Breeding:
G, V, E

1. procedure BREED(G, V, E)
o R—{)

3 for v in V do

4 N = Neighbors(v)

5: for n in N do

6 C = children(n,v)
7 for cin C do

8 if fitness(c) < fitness(v) then
9 R+ = (e,v)
10: end for

11: end for

12: end for

13: for r in R do

14: replace(G,r[0],r[1])
15: end for

1.5 Prior and Related Work

Much of this chapter will be applying the work done by Ashlock et al. in their 1999 paper ” Graph
Based Genetic Algorithms”, where they took different kinds of graphs and applied them to three
genetic algorithms problems. They explored the time it took to solve the problems given many
different kinds of graphs.

1.6 A Sequential Algorithm

The Kernel proposed above, if taken to be sequential, would have a rather complex execution
time, dependent on the execution time of each of the underlying functions, specifically children
and fitness. In the worst case scenario, a fully connected graph, the execution time is O(V252C')
where V' is the number of vertices in the graph, S is the size of a given solution, and C is the
number of children produced by children. The pseudo-polynomial nature of the solution is the
power of the genetic algorithm, as a good chunk of the solution space is evaluated, but done in an
algorithmic manner.

1.7 A Reference Sequential Implementation

Evaluation of this approach was done in Python3, ran using PyPy3 to speed up execution.

1.8 Sequential Scaling Results

Discuss here results from your sequential implementation. Include software and hardware config-
uration, where the input graph data sets came from, and how input data set characteristics were
varied. Did the performance as a function of size vary as you predicted?
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1.9 A Parallel Algorithm

1.10 A Reference Parallel Implementation

Discuss here an implementation of the basic parallel code. Include what language/paradigm you
used for the code.

1.11 Parallel Scaling Results

Discuss here results from parallel algorithm. Include software and hardware configuration, where
the input graph data sets came from, and how input data set characteristics were varied. Ideally
plots of performance vs BOTH problem size changes AND hardware resources are desired. Did the
performance as a function of size vary as you predicted?

1.12 Conclusion

Summarize your paper. Discuss possible future work and/or other options that may make sense.

1.13 Response to Reviews

This will be included only in the second and third iterations, and will be a summary of what
you learned from the reviews you received from the prior pass, and how you modified the paper
accordingly.
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