
Chapter 1

Modularity and Neural Networks

Contributed by Mark Horeni

1.1 Introduction

Community detection is useful unsupervised way to understand more information about a graph.
One way to do community detection is by maximizing a global property of the graph known as
modularity. Maximizing modularity has been used in a wide variety of applications with some suc-
cess in not only biological networks, but other social networks and beyond for community detection
[5] [6]. Specifically, modulairty maximization techniques have been shown to out perform other
community detection algorithms [6].

1.2 The Problem as a Graph

Individual neurons can be thought of as nodes, and each neuron has two types of connectors, either
gap junctions or chemical synapses.[7] Chemical synapses as seen in Figure 1.1, can have 1, 2, or 3
directed outputs to another neuron, while similarly, gap junctions can have multiple outputs, but
these outputs are undirected as the electrical flow can technically flow either way [7].

1.3 Some Realistic Data Sets

The c. elegans is a transparent roundworm that has had all of its neurons mapped along with all
of the connections. There are a total of 279 neurons, and between them there are around 6393
chemical synapses and 890 electrical gap junctions[1]. Each neuron has an attribute of whether the
neuron itself is either a motor, sensory, or inter neuron (or a combination of), and the distribution
of those are roughly equal across neurons [1].
The worm data is the only complete data, but there does exist partial data for other animals
including partial data from flies, cats, macaques, mice, rats, and humans.

1.4 Louvain-A Key Graph Kernel

Modularity, Q, is defined as the following [2]
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1
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Figure 1.1: A view of the neurons and their chemical synapses

where 2m is the weight of all edges, Aij is the weight between i and j, ki and kj are the total weights
attached to each i and j, and ci and cj are the communities. The goal is to find which combinations
of nodes when grouped into certain communities, which combination maximizes modulairty.

1.4.1 Undirected Louvain

Since the goal is to maximize modulairty, the approach of the Louvain algorithm is greedy opti-
mization. To do this, the algorithm first starts with every node in its own community [2]. Next,
each node is put into a neighboring community and the change in modularity is calculated by
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where
∑

in are the total weights inside community C,
∑

tot is the sum of edges of the links incident
to nodes in C, ki are the sum of incident links of node i, and ki,in is the sum of weights from i in
C with m being the total sum of weights in the network [2].
The other half of the algorithm takes the previous phase, and turns each community into its own
node with a self loop with the weight of all the edges of all the nodes inside the community. When
this finishes, the process goes back to the first half, and the process is repeated until modularity
no longer increases between iterations. This proccess is shown visually in figure 1.2 [4].

1.4.2 Directed Louvain

Although modularity is usually defined for unweighted graphs, in directed graphs it can be defined
as

Qd =
1
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dini d
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j

m
]δ(ci, cj)
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Figure 1.2: Example of the Louvain Algorithm

where the only difference is that m is now the weight of all the arcs (directed edges), and din stands
for the in degree of i while doutj stands for the out degree of j [3].
Similarly, change in modularity can be defined as

∆Qd
=
dCi
m
− [

douti

∑in
tot +dini

∑out
in

m2

where
∑in

tot is the sum of all in-going arcs into community C, and
∑out

tot are all the out-going arcs
out of community C [3].

1.4.3 Psuodcode

The pusdocode of the algorithm that runs with time compleixity O(n log n) is as follows [5]

1.5 Prior and Related Work

This is space to add in discussion of prior work - word on the same problem or kernel that your
paper assumes, and related work - work on the same application but using different approach or
kernel, or a different but similar application..

1.6 A Sequential Algorithm

Discuss here the outlines of a sequential algorithm. What programming paradigms might make the
most sense? What are the key data structures? Does the computational complexity differ from
that in the Section 1.4?

1.7 A Reference Sequential Implementation

Discuss here your implementation of the basic sequential code. Include what language/paradigm
you used for the code.
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Algorithm 1 Louvain

1: V : a set of vertices
2: E: a set of edges
3: W : a set of weights of edges, initialized to 1
4: G← (V,E,W )
5: repeat
6: C ← {{vi}}|vi ∈ G(V ))}
7: Calculate current modularity Qcur

8: Qnew ← Qcur

9: Qold ← Qnew

10: repeat
11: for vi ∈ V do
12: Qnew ← Qcur

13: remove vi from its current community
14: Nvi ← {ck|vi ∈ G(V ), vj ∈ ck, eij ∈ G(E)}
15: find cx ∈ Nvi that has max∆Q{vi},cx > 0

16: Calculate new modularity Qnew

17: until no membership change or Qnew = Qcur

18: V ′ ← {ci|c∈C}
19: E′ ← {eij |∀eij if vi ∈ Ci, vj ∈ Cj , and C 6 = Cj

20: W ′ ← {ij |
∑
wij ,∀eij if vi ∈ Ci and vj ∈ Cj}

21: until Qnew = Qold

1.8 Sequential Scaling Results

Discuss here results from your sequential implementation. Include software and hardware config-
uration, where the input graph data sets came from, and how input data set characteristics were
varied. Did the performance as a function of size vary as you predicted?

1.9 An Enhanced Algorithm

Discuss here the outlines of an enhanced algorithm. This could be a parallel code, a code with some
significant heuristics, or a code written in a non-traditional programming paradigm. Pseudocode
is fine. Discuss what you think is the computational complexity.

1.10 A Reference Enhanced Implementation

Discuss here an implementation of the enhanced algorithm. Include what language/paradigm you
used for the code.

1.11 Enhanced Scaling Results

Discuss here results from the enhanced algorithm. Include software and hardware configuration,
where the input graph data sets came from, and how input data set characteristics were varied.
Ideally plots of performance vs BOTH problem size changes AND hardware resources are desired.
Did the performance as a function of size vary as you predicted?
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1.12 Conclusion

Summarize your paper. Discuss possible future work and/or other options that may make sense.

1.13 Response to Reviews

This will be included only in the second and third iterations, and will be a summary of what
you learned from the reviews you received from the prior pass, and how you modified the paper
accordingly.
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