Chapter 1

BuildHON?: A Scalable Higher-Order
Network

Contributed by Steven Krieg

1.1 Introduction

Networks are used to represent and analyze a variety of problems related to big data. However, some
data is too complex to be accurately reprsented by a traditional first-order network. In the case
of a first-order network, sequences of data are analyzed as Markov chains. For many applications,
including transportation networks and anomaly detection, accurate analysis must take into account
a series of events, not just one pair. A higher-order network (HON) representation is a creative
solution to this problem that has demonstrated compelling increases in representative accuracy [6].
However, the trade-off for increased accuracy is increased network size and computational cost. In
some cases, this trade-off may make HON an unattractive option. In this project, I will seek to
provide a scalable implementation of a higher-order network. If successful, the implementation will
provide HON’s key representational benefits while minimizing their costs.

1.2 The Problem as a Graph

HON deals with data representing sequential interactions with multiple-levels of dependencies.
Figure 1.1 illustrates a simple example.

Our data contains 16 sequences: 4 * (A, M), 4 * (B, M), 4 * (M, X), and 4 * (M, Y). Consider
that our task is to determine the probability that a random walker beginning from node A will
reach node X. A first-order network counts the number of pairwise interactions between all nodes
and represents the probability of the interaction between both nodes as the edge weight. The
random walker will go from A to M with 100% probability. From M, the walker has a 50% chance
of moving to X and a 50% chance of moving to Y. From the visualization, we can see that this
is not an accurate result. When A is the source, our data shows 75% termination at X. We will
have the same representation problem when vertex B is the source. However, a first-order network
has no mechanism for chaining these sequences together, and thus once our walker reaches M it
”forgets” its source.

A smarter algorithm can be a solution to this problem: for example, our random walker could be
trained on rules. This could be costly at many levels. HON tackles the problem from another angle
by choosing a better representation for the network itself. In the example above, HON responds

1

Raw event sequence data

O—W—0 G—W—0

BuildHON?

First-order network

Count number of

pairwise interactions
as edge weights

@)\ 50% (X)

G——0 O—W—K
GO——0 O—w—0
®—W—0 O—w—0

Extract higher-order dependencies
from raw event sequences

Higher-order dependencies Higher-order network

Construct HON
75% @ 2556 @ based on the
4

extracted rules
(Bt (M1

—_—
25% (¥) 75% (Y)

Figure 1.1: The HON Idea [4]

Onms

to a dependency by splitting M into 2 nodes: M—A and M—B. The benefit from this solution
is that our random walker does not need to be any smarter; the network representation solve the
problem for it. This is a chief goal of HON: making the network structure more representative
so existing tools can be utilized without modification. BuildHON+, the algorithm responsible for
making these network modifications, will be discussed below.

1.3 Some Realistic Data Sets

HON processes data that can be represented as a weighted digraph. The two datasets utilized
in previous implementations are global shipping routes traversed during several months in 2012
(real-world, 31,000 edges) [6], and synthetic clickstream data used for anomaly detection [5]. Both
datasets are publicly available with the HON solution. I plan to begin with these data sets, and
potentially incorporate others as the implementation scales [7].

1.4 BuildHON?-A Key Graph Kernel

In this project I seek to develop BuildHON?, a scalable version of the BuildHON network rewiring
algorithm. BuildHON includes 2 major phases: rule extraction and network rewiring [6]. The
second iteration, BuildHON+, significantly improved the runtime of the algorithm by implementing
a lazy version of rule extraction [5]. However, BuildHON+ still has complexity 8(N)(2R; + 3R2 +
...(i+1)R;). While not expontential, as the number of nodes N and rules (dependencies) i increases
in very large and comlex data sets, BuildHON+ will reach a point of unusability. In such cases,
researchers must make a difficult trade-off between performance and the superior accuracy of a HON
representation. The goal of BuildHON?is to address this problem such the benefits of building a
HON will be well worth the costs.

A couple ideas are key to a more scalable implementation. First is implementation efficiency.
BuildHON+ is currently implemented in Python, but an implementation in a more efficient paradigm
will be more usable on large data sets. Second is parallelism. BuildHON+ could reap the distributed

Version 0.1 Page 2

BuildHON?

benefits of a distributed graph platform like Giraph [1] or Parallel Boost [3]. A more streaming-
friendly graph platform like STINGER [2] may also enhance BuildHON’s capabilities.

Note that I am not primarily seeking to improve the theoretical efficiency of the BuildHon+
algorithm. My focus is instead on the performance of concrete implementations.

1.5 Prior and Related Work

Graph researchers have long acknowledged the limitations of first-order networks. Though much
research has sought to overcome these limitations, most of them focus on algorithms rather than
representation. Some representation solutions have been proposed, such as a fixed second-order
network. However, a fixed second-order introduces many unnecessary nodes and edges. Because
the order is fixed to two, even interactions that are represented accurately with only a single order
are forced to include a second. This may be appropriate for some networks, but most real-world
networks are scale-free and thus the majority of higher orders are centralized to hubs [6]. This
means dependencies for nodes near hubs will tend to be underrepresented and depedencies for
nodes far from hubs will be overrepresented. Accuracy will not suffer but the efficiency of graph
computations will.

BuildHON+, in response to this problem, is designed to be flexible. It only rewires nodes and
edges where dependencies are found, and can specify an arbitrary maximum for levels of dependency.
Thus it is almost always more accurate and more efficient than fixed-order networks when applied
to real-world networks [6].

Many solutions have been proposed for scalable graph computations: new algorithms, archi-
tectures, engines, and more. These solutions may be very helpful in conjunction with BuildHON?:
if the data set is large enough to require a distributed solution for building a HON, it will likely
require a distributed solution for computations on the HON. But the BuildHONZimplementation
itself will focus on the actual generation of the network, which can then be processed as any other
graph.

1.6 A Sequential Algorithm

The state-of-the-art sequential algorithm is detailed in Figure 1.2.

1.7 A Reference Sequential Implementation

Discuss here your implementation of the basic sequential code. Include what language/paradigm
you used for the code.

1.8 Sequential Scaling Results

Discuss here results from your sequential implementation. Include software and hardware config-
uration, where the input graph data sets came from, and how input data set characteristics were
varied. Did the performance as a function of size vary as you predicted?

Version 0.1 Page 3

BuildHON?

Algorithm 1 HON+ rule extraction algorithm. Given the
raw sequential data 7', extracts arbitrarily high orders of
dependencies, and output the dependency rules R. Op-
tional parameters include MaxOrder, MinSupport, and
ThresholdMultiplier

1: define global C' as nested counter

2: define global D,R as nested dictionary

3: define global SourceToExtSource, StartingPoints as dic-
tionary

5: function EXTRACTRULES(T,
ThresholdMultiplier = 1])

6: global MaxOrder, MinSupport, Aggresiveness

7: BUILDFIRSTORDEROBSERVATIONS(T")

8: BUILDFIRSTORDERDISTRIBUTIONS(7")

9: GENERATEALLRULES(M axzOrder, T)

[MaxOrder, MinSupport,

11: function BUILDFIRSTORDEROBSERVATIONS(T')
12: for t in T do

13: for (Source, Target) in t do

14: ClSource][Target] += 1

15: 1C.add(Source)

16:

17: function BUILDFIRSTORDERDISTRIBUTIONS(T')

18: for Source in C' do

19: for Target in C[Source] do

20: if C[Source][Target] < MinSupport then
21: C[Source][Target] =0

22: for Target in C[Source] do

23: if thenC[Source][Target] > 0

24: D([Source][Target) =

C[Source][Target] /(> ClSource][x])

26: function GENERATEALLRULES(M axOrder, T)
27: for Source in D do

28: ADDTORULES(Source)

29: EXTENDRULE(Source, Source, 1, T')

31: function KLDTHRESHOLD(N ewOrder, ExtSource)

32: return ThresholdMultiplier x NewOrder/log2(1 +
>~ C[ExztSource][#])

33: function EXTENDRULE(V alid, Curr, order, T)

34: if Order < MaxOrder then

35: ADDTORULES(Source)

36: else

37 Distr = D[Valid]

38: if —logz(min(Distr[«].vals)) < KLDTHRESH-
oLD(order + 1), Curr then

39: ADDTORULES(V alid)

40: else

41: NewOrder = order + 1

42: Extended = EXTENDSOURCE(Curr)

43: if Extended = () then

44: ADDTORULES(V alid)

45: else

46: for ExtSource in Extended do

47 ExtDistr = D[ExtSource]

48: divergence = KLD(ExtDistr, Distr)

49: if divergence > KLDTHRESH-
oLD(NewOrder, ExtSource) then

50: EXTEN-
DRULE(EztSource, ExtSource, NewOrder,T)

51: else

52: EXTEN-

DRULE(Valid, ExtSource, NewOrder,T)

Algorithm 1 (continued)

53: function ADDTORULES(Source):
54: for order in [l.len(Source) + 1] do

55: s = Source|0 : order]

56: if not s in D or len(D[s]) == 0 then
57: EXTENDSOURCE(s[1:])

58: for ¢t in C[s] do

59: if C[s][t] > O then

60: R[s][t] = Cs][t]

61:

62: function EXTENDSOURCE(C'urr)
63: if Curr in SourceToExtSource then

64: return SourceToExtSource[Curr]
65: else

66: EXTENDOBSERVATION(Curr)

67: if Curr in SourceToExtSource then
68: return SourceToExtsource[Curr]
69: else

70: return ()

71:

72: function EXTENDOBSERVATION(Source)
73: if length(Source) > 1 then

74: if not Source[l :] in ExtC or ExtC[Source] = () then

75: EXTENDOBSERVATION(Source[l :])

76: order = length(Source)

77: define ExtC as nested counter

78: for Tindex,index in StartingPoints[Source] do

79: if index — 1 < 0 and indexr + order <
length(T|Tindez]) then

80: ExtSource = T[Tindez]|[index — 1 : index +
order]

81: ExtC[ExtSource][Target]+ =1

82: StartingPoints[ExtSource].add((Tindex, index—
1)

83: if ExtC = () then

84: return

85: for S in ExtC do

86: for ¢ in ExtC([s] do

87: if ExtC[s][t] < MinSupport then

88: ExtC[s][t] =0

89: C[s][t]+ = ExtC][s][t]

90: CsSupport =Y ExtC|s][]

91: for t in ExtC[s| do

92: if ExtC[s][t] > 0 then

93: D[s|[t] = ExtC|[s][t]/CsSupport

94: SourceToExtSource[s[l :]].add(s)

95:

96: function BUILDSOURCETOEXTSOURCE(order)

97: for source in D do

98: if len(source) = order then

99: if len(source) > 1 then

100: NewOrder = len(source)

101: for startingin|l..len(source)| do

102: curr = source[starting :]

103: if not curr in SourceToExtSource then

104: SourceToExtSource[curr] = ()

105: if not NewOrder in
SourceToExtSource[curr] then

106: SourceToExtSource[curr][NewOrder] =
0

107: SourceToExtSource[curr][NewOrder].add(source)

Figure 1.2: The BuildHON+ Rule Exraction Algorithm [7]

Version 0.1

Page 4

BuildHON?

1.9 An Enhanced Algorithm

Discuss here the outlines of an enhanced algorithm. This could be a parallel code, a code with some
significant heuristics, or a code written in a non-traditional programming paradigm. Pseudocode
is fine. Discuss what you think is the computational complexity.

1.10 A Reference Enhanced Implementation

Discuss here an implementation of the enhanced algorithm. Include what language/paradigm you
used for the code.

1.11 Enhanced Scaling Results

Discuss here results from the enhanced algorithm. Include software and hardware configuration,
where the input graph data sets came from, and how input data set characteristics were varied.
Ideally plots of performance vs BOTH problem size changes AND hardware resources are desired.
Did the performance as a function of size vary as you predicted?

1.12 Conclusion

Summarize your paper. Discuss possible future work and/or other options that may make sense.

1.13 Response to Reviews

This will be included only in the second and third iterations, and will be a summary of what
you learned from the reviews you received from the prior pass, and how you modified the paper
accordingly.

Version 0.1 Page 5

Bibliography

1]

2]

Ching Avery. Giraph: Large-scale graph processing infrastructure on hadoop. Proceedings of
the Hadoop Summit. Santa Clara, 11(3):5-9, 2011.

David A Bader, Jonathan Berry, Adam Amos-Binks, Daniel Chavarria-Miranda, Charles Hast-
ings, Kamesh Madduri, and Steven C Poulos. Stinger: Spatio-temporal interaction networks
and graphs (sting) extensible representation. Georgia Institute of Technology, Tech. Rep, 2009.

Douglas Gregor and Andrew Lumsdaine. The parallel bgl: A generic library for distributed
graph computations. Parallel Object-Oriented Scientific Computing (POOSC), 2:1-18, 2005.

iCeNSA. Higher Order Networks. http://www.higherordernetwork.com/, 2018 (accessed Sept.
30, 2018).

Jian Xu, Mandana Saebi, Bruno Ribeiro, Lance M Kaplan, and Nitesh V Chawla. Detecting
anomalies in sequential data with higher-order networks. arXiv preprint arXiv:1712.09658,
2017.

Jian Xu, Thanuka L Wickramarathne, and Nitesh V Chawla. Representing higher-order depen-
dencies in networks. Science advances, 2(5):¢1600028, 2016.

Jian Xu, Thanuka L. Wickramarathne, and Nitesh V. Chawla. Higher Order Networks Repos-
itory, 2018 (accessed Sept. 30, 2018).

