Chapter 1

Filesystem Partitioning via
Hierarchical Cluster Analysis

Contributed by Tim Shaffer

1.1 Introduction

As research computation achieves larger scales and takes greater advantage of hardware accelerators
such as FPGAs, GPUs, and TPUs, the availability and performance of the storage system becomes
a bottleneck in the overall performance of an application. Checkpointing, scratch storage, and data
distribution all place storage in the critical path of the application, forcing the storage system to
keep up. Parallel filesystems offer a way of delivering large file I/O bandwidth, scaling with storage
hardware by striping blocks, files, and volumes across different devices, and maintaining consistent
metadata and organization.

Metadata performance becomes a key bottleneck in most storage systems at extreme scale.
Strategies such as caching, striping, and larger transactions allow for improvements in file data
access. Unfortunately, serving the system’s metadata poses distinct challenges that preclude ap-
proaches used for data access. Metadata elements are small (e.g. user-visible inode information),
require stronger consistency than data, and are accessed through small update transactions rather
than large linear reads and writes. It also becomes difficult to maintain a consistent view of di-
rectory structures among a large number of nodes with (potentially) an extremely large number of
directory entries.

Metadata activity is often extremely unbalanced, as production high performance comput-
ing (HPC) applications generate irregular bursts of metadata access. Application startup is par-
ticularly problematic for the storage system. While researchers often treat HPC applications as
“simple” programs to be launched, the steps required are almost always more complicated. What
appears to be a single “application” may actually be a complex collection of interpreted programs,
dynamic libraries, configuration files, and calibration data. Loading the complete structure of the
application into cluster memory at startup results in tens of thousands of interactions with the
filesystem at each node. When thousands of nodes of the cluster attempt to load the same applica-
tion at the same time, the filesystem must handle thousands of small transactions from each node
before any one can make progress.

The problem of metadata handling is in the general case extremely difficult to solve. The
consistency semantics of general-purpose filesystems severely limit potential optimizations. The
different ways a shared filesystem is used each require somewhat different semantics. Data passed

1

CLUSTERING

between concurrent processes, for example, requires strong consistency at each filesystem interac-
tion. Between sequential processes, filesystem data requires strong consistency eventually. Static
data such as software will not change during the execution of a given task does not require additional
consistency guarantees.

For scientific applications at scale, metadata behavior often becomes the limiting factor for
performance. Scientific software is likely to use the shared filesystem in all of the previous ways. A
single application may store intermediate files, synchronize between steps of an analysis, distribute
application software, and collect results from multiple worker nodes. A general-purpose filesystem
must adequately support the strain imposed by each. Efficient handling of common cases such as
software distribution can be the key factor in attempting to scale up an analytic workflow. Poor
choice of filesystem use or missed optimizations will make shared computing resources unusable for
a given researcher, or in some cases for all users of a site.

Widely deployed shared filesystems such as Panasas [10], Lustre [1], Ceph [9], Gluster [5],
and HDFS [7] rely on separate data and metadata servers to make a filesystem tree and its data
visible from anywhere in the system. Access patterns for data permit optimizations to servers that
simplify operation and improve throughput and parallel access. Large reads and write of file data
are especially suited to bulk access operations. Unlike the generally simple and flat structure of
data stores, metadata servers must maintain consistent views of hierarchical files and directories.
In order for a node to to read a file’s data, path resolution is the responsibility of metadata servers.
These lookups and permission checks eventually determine the location where the actual data are
stored. Efficient path resolution and metadata lookup is thus critical for the performance of a
shared filesystem.

While data servers can easily increase replication and shift load away from overloaded servers,
metadata servers must maintain stronger consistency guarantees. It is common to use filesystem
partitioning to balance the load of requests Choice of partitioning scheme depends on user activity
and filesystem organization. While it is possible in some cases to shift excessive loads between meta-
data servers, the requirement for consistent semantics of operations makes it difficult to distribute
a single part of the filesystem tree across multiple metadata servers. When load on a particular
metadata server becomes excessive, all requests (including some data requests) cannot be served
efficiently. Users then experience degraded performance or loss of service despite. In this situation,
accesses to a single part of the filesystem transalte to load on a single metadata server responsible
for a partition. Thus the overall system’s performance is degraded while leaving data storage nodes
underutilized [11]. For parallel filesyetems at increasing scales, metadata bottlenecks become the
limiting factor for performance and usability. These pathological metadata access patterns motivate
many of the design choices of modern parallel filesystems like Ceph.

1.2 The Problem as a Graph

Applications at HPC centers are composed of (a possibly large number of) individual processes.
Running a process requires, at minimum, path search and library loading. It is also common for
processes to search for and read in input, configuration, or calibration data. Some applications use
the shared filesystem as a means to synchronize between components. To allow the application
to recover from failures, checkpoints can be written out as well. Finally, there is usually some
output data flushed to the filesystem. The latter three uses rely on strong filesystem semantics and
consistency guarantees, limiting the optimizations available. The former uses, however, are good
candidates for further examination.

By identifying parts of the filesystem that are used together, for example all of the libraries a

Version 1.0 Page 2

CLUSTERING

single program loads, it becomes to possible to use more target optimizations such as pre-staging a
frequently used subset of static metadata entries on nodes. Unfortunately, determining which parts
of a filesystem are relevant to a particular application is difficult. There is generally a set sequence
of operations for path search, library loading, etc. The exact operations can be non-deterministic
or data dependent, however. Furthermore, each individual process of a complete application has
distinct behavior, though some patterns are likely to be repeated across processes. There is thus
no way to determine a priori which parts of the filesystem an application relies on. It is also
not sufficient to try to identify one or a few “program directories” containing all needed pieces.
Research applications can (and very often do) use creative filesystem organizations that are not
amenable to automatic dependency tracking.

Lacking an a priori method to determine the filesystem dependencies of an arbitrary research
application, it is instead necessary to observe filesystem behavior over multiple application runs. It
is possible to trace the behavior of individual processes using tools like strace to capture syscalls.
Since there is a performance penalty in tracing, it is generally better to trace some fraction of
processes.

Using these process-level traces, the next step is interpreting the sequences of accesses and
choosing groups of related filesystem entries. It is not sufficient to simply collect every filesystem
entry that was accessed. This approach collects broad trees of filesystem entries that in practice
include substantial amounts of irrelevant data. Instead, a better approach would take into account
the fine-grained behavior of the processes. For example, a directory that is listed once during
library search and never accessed again is a poor candidate for optimization. On the other hand,
a set of libraries that are accessed consecutively by every process should be grouped together and
pre-staged on nodes to reduce traffic to the shared filesystem.

To capture both the frequencies and orderings of filesystem accesses, we can build a directed
graph based on the syscall traces of each process. In this representation, filesystem entries are the
vertices of the graph. The events comprising the syscall traces are used to derive edge weights, with
large numbers of accesses resulting in high edge weights. For a process that most recently accessed
filesystem entry A and next accesses B, we increase the edge weight of A — B by one, creating the
edge if it does not exist. This representation includes far fewer vertices and edges than events in
the syscall trace. In addition, it is amenable to streaming updates as new traces become available
or the input data and configuration change.

1.3 Some Realistic Data Sets

The strace utility is widely available on Linux based systems, making it possible for researchers
to collect syscall traces from their applications. Aside from the previously mentioned performance
overhead, there is little barrier to profiling as the process does not require changes to the application.
It might be possible to refer to a graph database or to generate synthetic graphs, but simply
profiling the actual application will be more effective. As an example application that researchers
actively use in an HPC context, we collected syscall traces of MAKER [2], a complex bioinformatics
application. Aside from the application itself and its input data, MAKER depends directly or
indirectly on an additional 40 languages and libraries. Each phase of a MAKER analysis uses some
subset of these dependencies and inputs. Over the course of an analysis, MAKER spawns a large
number of individual processes, each of which goes through library loading, input data selection,
etc. In our test run on a small dataset, MAKER performed 3.8 million I/O operations. Of these,
1.1 million were metadata operations. This run included bursts of up to 10,000 metadata 1/0O
operations per second. The total running time was 13.7 seconds. Note that it is not uncommon

Version 1.0 Page 3

CLUSTERING

for HPC applications to run for hours or even days. A longer-running application would produce a
corresponding increase in the number of 1/O operations. For the following sections, we will explore
additional applications and datasets.

Rather than representing each metadata operations directly, the graph representation of the
execution trace aggregates these events into edge weights. Each vertex in the graph corresponds to
a filesystem entry accessed during the run. For this small run, the resulting graph included roughly
20,000 vertices. An analysis on a larger data set or using an application with more dependencies
would result in a larger number of vertices. The graph for this particular run included roughly
60,000 edges. Again, the number of edges and ratio of vertices to edges is strongly dependent on
both the application and the dataset. Since the programs spawned during a MAKER analysis
exhibit both non-deterministic and data dependent behavior, there can also be limited variation in
the properties of the graphs of otherwise identical runs. Streaming events from multiple analysis
runs into the same graph will also result in changes to the graph properties, though it is hard
to predict behavior in the general case over all applications. As general trends, merging multiple
distinct applications into the same graph should result in a largely disconnected cluster for each
application’s activity. Combining analyses of different data sets in the same application should
result in an increased graph size with some core vertices common to all runs. Finally, merging
events from analysis of the same data in the same application should not significantly affect the
properties of the graph.

1.4 CLUSTERING-A Key Graph Kernel

To detect clusters of related filesystem entries, we propose applying hierarchical cluster analysis to
the execution trace graph of an application. Clusters in the graph serve as reasonable groupings
of filesystem entries for partitioning or pre-staging at worker nodes. In addition, the dendrogram
resulting from hierarchical cluster analysis allows some flexibility in the granularity of clusters.
When applied to real-world applications, a completely automated approach is difficult in the general
case. Providing a choice in cluster granularity allows the user to apply domain knowledge to make
the best decision while still providing some automated assistance.

To illustrate hierarchical cluster analysis, we use the Girvan-Newman algorithm [3], a well-
studied method. Girvan—Newman repeatedly removes edges from the graph, with the remaining
connected components as the clusters. The edge to be removed each step is chosen based on edge
betweenness, a centrality measure of the number of shortest paths in the graph passing along a
given edge. The underlying assumption is that by iteratively removing non-central edges, you can
gradually cut apart the clusters. The algorithm proceeds until all edges have been removed. Thus
the user can choose precise cluster granularities from individual vertices up to the entire graph.
The algorithm itself (taken from [3]) is given in Figure 1.

Algorithm 1 The Girvan—-Newman Algorithm
Require: Graph G = (V, E).
Calculate betweenness g(e) for each edge e € E.
while |E| > 0 do
Remove the edge e with the highest betweenness g(e).
Recalculate betweennesses for all edges affected by the removal.
Identify clusters as connected components in G.

The betweenness can be calculated using [4] in O(mn) time, where m is the number of edges and
Version 1.0 Page 4

CLUSTERING

n is the number of vertices in . Since betweenness is calculated at the removal of each edge, the
algorithm runs in O(m?n) time. Determining connected components can be performed in O(m +n)
time. Since only changes to betweenness need to be calculated after the first time, this repeated
computation can be confined to a single connected component rather than the whole graph. As
the clusters become smaller and smaller, in practice this optimization significantly reduces the
computation.

1.5 Prior and Related Work

Several approaches to achieving sufficient metadata performance in shared filesystems have been
explored. One approach is to separate metadata from the parallel filesystem completely. This
approach maps metadata storage tables to file objects in the parallel filesystem [12, 6]. The total
metadata transaction rate of the system is improved, but each client must still make many small
transactions while using the service. Another approach is to introduce new operations that access
metadata in bulk or with weaker consistency guarantees. Examples of this include the proposed
getlongdir and statlite system calls [8], which are, unfortunately, not widely implemented. This
reduction in the transaction rate between clients and servers complements other approaches.

Version 1.0 Page 5

Bibliography

[1]

[11]

R. Behrends, L. K. Dillon, S. D. Fleming, and R. E. K. Stirewalt. White paper: Lustre
file system high-performance storage architecture and scalable cluster file system. Technical
report, Sun Microsystems, Menlo Park, California, December 2007.

M. S. Campbell, C. Holt, B. Moore, and M. Yandell. Genome Annotation and Curation Using
MAKER and MAKER-P. Curr Protoc Bioinformatics, 48:1-39, Dec 2014.

M. Girvan and M. E. J. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12):7821-7826, 2002.

M. E. J. Newman. Scientific collaboration networks. i. network construction and fundamental
results. Phys. Rev. E, 64:016131, Jun 2001.

Inc. Red Hat. Gluster. http://www.gluster.org/, 2017. Accessed 2018-09-28.

K. Ren, Q. Zheng, S. Patil, and G. Gibson. Indexfs: Scaling file system metadata perfor-
mance with stateless caching and bulk insertion. In SC1/4: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 237-248, Nov 2014.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop dis-
tributed file system. In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Sys-
tems and Technologies (MSST), MSST ’10, pages 1-10, Washington, DC, USA, 2010. IEEE
Computer Society.

Murali Vilayannur, Samuel Lang, Robert Ross, Ruth Klundt, Lee Ward, et al. Extending the
posix i/o interface: A parallel file system perspective. Argonne National Laboratory, Tech.
Rep. ANL/MCS-TM-302, 2008.

Sage A Weil, Scott A Brandt, Ethan L. Miller, Darrell DE Long, and Carlos Maltzahn. Ceph:
A scalable, high-performance distributed file system. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages 307-320. USENIX Association, 2006.

Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller, Jason Small, Jim
Zelenka, and Bin Zhou. Scalable performance of the panasas parallel file system. In Proceedings
of the 6th USENIX Conference on File and Storage Technologies, FAST’08, pages 2:1-2:17,
Berkeley, CA, USA, 2008. USENIX Association.

Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin, Scott Klasky, Sarp Oral, and Norbert
Podhorszki. Characterizing output bottlenecks in a supercomputer. In Proceedings of the

International Conference on High Performance Computing, Networking, Storage and Analysis,
SC 12, pages 8:1-8:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

6

CLUSTERING

[12] Q. Zheng, K. Ren, and G. Gibson. Batchfs: Scaling the file system control plane with client-
funded metadata servers. In 2014 9th Parallel Data Storage Workshop, pages 1-6, Nov 2014.

Version 1.0 Page 7

