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Distributed System Debugging and
Depth First Search

Contributed by Nathaniel Kremer-Herman

1.1 Introduction

There are two common algorithms for traversing the entirety of a graph. These are depth first
search (DFS) and breadth first search (BFS). The DFS algorithm begins at an arbitrary root
node and traverses as far as it can down one branch of the graph until it cannot traverse any
further. It then backtracks up to the closest unexplored branch and begins its traversal, repeating
this exploratory step. BFS works in an inverse manner. It traverses each unexplored node adjacent
to the root node in the first step. Each adjacent node from these newly-traversed nodes become a
frontier which BFS explores one node at a time rather than one branch at a time like in DFS. While
this allows BFS to explore each branch of a graph in a somewhat concurrent manner, it can leave
a large memory footprint. Depth first search, on the other hand, is less memory-intensive since it
traverses an entire branch in one iteration then relinquishes the memory used for those nodes once
the branch has been exhausted. Depth first search is explored in this chapter.

An application for which DFS is useful is debugging a distributed system. In this chapter, a
distributed system is defined as a set of machines which operate within some shared resource ecosys-
tem such that the processes which make up an application can run on these multiple machines.
Example applications include scientific workflows, machine learning applications, large-scale simu-
lations, etc. Each of these applications has some inherent sense of scalability which a distributed
system can provide. An application is composed of a set of atomic units of work called tasks. A
task is typically a process which consumes some pre-defined input data to produce expected output
data which is used by subsequent tasks. An application is thus a pipeline (or multiple concurrent
pipelines) of tasks which consume some original input data to produce some final result.

At the University of Notre Dame, researchers have access to a distributed system consisting
of multiple machines totaling at approximately 25, 000 cores. These machines are connected by
multiple resource management services. These includes an Apache Hadoop cluster, the HTCondor
batch system, and the UGE batch system. Researchers write parallel applications which make use
of these resources via Hadoop, HTCondor, and UGE (as well as other boutique resource managers
they stand up on their own). These researchers are typically used to running their analyses,
simulations, and other applications sequentially on their laptop or workstation. When asked to
parallelize their work, a researcher is usually sent outside of their coding comfort zone.
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It is often the case that the researcher will not fully understand the level of scaling their ap-
plication can handle. This could mean they write their application to be embarrassingly parallel
when in fact it will not operate as such. On top of understanding the behavior of an application
is the necessity of understanding how each task of an application will interact with its runtime en-
vironment. A runtime environment consists of environment variables, files, libraries, and resources
like cores, memory, and disk. If a user does not properly specify what the environment for each
task should be, there will be issues at runtime. This is especially true of tasks whose environment
is specified by other tasks which ran before it.

For example, take task n and task n + 100. Task n must successfully complete before task
n + 100 can execute. Task n performs some work and sets an environment variable on machine A.
Machine A is located in the UGE cluster. For the sake of realism, let us assume task n sets the
Java $CLASSPATH environment variable because the task is in charge of noting where some Java
libraries are located. A few hours later, task n + 100 executes on machine B. Machine B is in the
HTCondor cluster, it has a different operating system than machine A, and it does not have access
to the shared filesystem which machine A uses. We can infer what will happen to task n+100. The
process will read in the $CLASSPATH originally set by task n and run a Java program. It is at this
point that task n + 100 will catastrophically fail! It is not able to link to the libraries specified in
$CLASSPATH because those libraries are located in a shared filesystem only accessible by machines
in the UGE cluster.

It is our experience that tasks often obfuscate these kinds of failures, making them difficult for
end-users to debug. This may be due to error handling by the process which returns a different error
message than the root cause, obfuscation by resource management software like virtual machines or
containers intercepting the environment failure, error obfuscation by the distributed system resource
managers like a batch system, or perhaps by custom error handling the researcher has written into
their own application. It would be preferable to insert some logging mechanism within each task
which tracks how it interacts with its environment. This removes all obscuring of the underlying
cause of failure at the task level. However, this does not tell us why this task’s environment induced
a failure. For that, we would need to find out from where this task received its environment
specification. This second problem can be implemented as a graph and solved via depth first
search.

1.2 The Problem as a Graph

We can represent the history of tasks of an application as a directed, acyclic graph (DAG). The tasks
which comprise an application have dependencies between each other. In the previous example,
we stated task n+ 100’s execution was contingent on task n’s successful execution. An application
can consist of O(10) tasks up to O(1, 000, 000) tasks, though typically they range from O(100) to
O(100, 000). Each tasks is a vertex in the DAG. The edges in the DAG represent the dependencies
between tasks. Each vertex may be dependent upon multiple prior vertices, and it may serve as a
dependency for multiple subsequent vertices.

1.3 Some Realistic Data Sets

As stated in Section 1.4, distributed applications typically range from O(100) to O(100, 000) tasks,
but an application may have any arbitrary number of tasks. The only logical constraint on task
number is whether the distributed system can handle the resources consumed by the outputs of
those tasks (e.g. disk space). Debugging information is tracked on a per-task basis, leading to
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the creation of a preponderance of log data throughout the lifetime of a distributed application.
The domains from which these applications arise vary greatly. Domain scientists from the natural
sciences like high-energy physics, bioinformatics, and computational chemists as well as social
scientists all have a burgeoning need for large-scale computational resources. Digital humanities
have experienced a similar uptick in distributed computing applications.

To demonstrate the effectiveness of depth first search in distributed systems debugging, we can
derive the necessary divergence from a traditional implementation of DFS from first principles. To
do this, we must first generate arbitrary DAGs. These DAGs will be composed of vertices which
are tagged as failed or succeeded. Each vertex will also have associated data about properties it
has inherited from it parent(s) and properties it passes down to its descendants. We can do this
by writing a DAG generator program. This abstracted view allows us to both construct a modified
depth first search algorithm for the purpose of distributed system debugging and provides a method
by which to test the scalability of the algorithm.

After testing with the synthetically generated DAGs, we can then test the modified DFS on
real log data. The logs will be created after execution of two different applications: a scientific
workflow and a machine learning application. Both are executed in a master-worker framework,
meaning there is a centralized master process in charge of transmitting input and output data as
well as dispatching tasks to worker processes on different compute nodes. The scientific workflow
is a bioinformatics application called BWA-GATK. It makes genomic comparisons from a small
query dataset to a larger reference dataset. The machine learning application is called SHADHO,
and it is used on the MNIST dataset to train on character recognition. Both applications consist
of over 1, 000 tasks and execute for multiple hours. The amount of tasks and total execution time
are both configurable.

1.4 DFS - A Key Graph Kernel

Depth first search as a graph kernel makes the most sense for the application of distributed debug-
ging. Although there are more intricate methods of traversing graph structures, we will need to
visit every vertex without much preference for which branch to visit first. DFS allows for this total
exploration. Breadth first search is another valid candidate, however we have to consider memory
constraints which may hinder the performance of BFS. This is especially true if we implement a
parallel method of traversing the graph since we cannot assume the size of available memory to be
large across multiple compute vertices.

Depth first search begins at an arbitrary root vertex. This vertex is labeled as visited. From
that root vertex, the algorithm gathers all the adjacent vertices to the selected root. For each
adjacent vertex, the algorithm checks if it has been visited. If it has not been visited, the algorithm
traverses to the vertex and repeats that step of gathering adjacent vertices. This process is repeated
until all vertices have been visited.

The iterative implementation of depth first search, shown in Algorithm 1, requires a stack.
vertices are pushed onto this stack if they are adjacent to the vertex most recently popped off the
stack. For each unvisited vertex, DFS labels it as visited and pushes its neighbors onto the stack.
This is repeated until all vertices have been visited and the stack is empty.

The recursive implementation of DFS, shown in Algorithm 2, is sleeker. There is no space
overhead of a stack. For each vertex, the algorithm recursively calls itself on all vertices adjacent to
the current one. On each recursive call, the vertex passed into the algorithm is labeled as visited.
The algorithm continues until no new unlabeledvertices exist.

The worst case time complexity for running both implementations of the algorithm is O(|V |+
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Algorithm 1 Iterative algorithm

1: procedure DFS(G, v)
2: let S be a stack
3: S.push(v)
4: while S is not empty do
5: v ← S.pop()
6: if v is not labeled as visited then
7: label v as visited
8: for all edges from v to w in G.adjacentEdges(v) do
9: S.push(w)

Algorithm 2 Recursive algorithm

1: procedure DFS(G, v)
2: label v as visited
3: for all edges from v to w in G.adjacentEdges(v) do
4: if w is not labeled as visited then
5: call DFS(G,w)

|E|), where |V | represents the number of vertices and |E| represents the number of edges in the
graph. This time complexity is due to the fact that the algorithm must traverse the whole graph,
visiting each vertex only once. Space complexity for DFS is O(|V |). This is obvious in the case of
the iterative implementation since a stack is kept of each vertex the algorithm must visit.

To gauge the performance of an exploratory graph algorithm, it makes sense to track how quickly
it can traverse the entire graph. We can measure this in traversed edges per second (TEPS). This
measurement is commonly used for depth first search and breadth first search.

1.5 A Sequential Algorithm

To implement the sequential depth first search algorithm, we must first take a look at how the
graph should be represented in-memory. The graph should be structured as a collection of vertices
whose edges are pointers to other vertices. An object-oriented approach, while viable, seems a bit
heavy-handed since the complexity of the data structures needed to represent a DAG are quite
low. Any standard language which allows for a data structure to store a few values and point to
another data structure is sufficient. We want to emphasize that standard languages should convey a
connotation of portability, which will be important for when the algorithm is scaled up to a parallel
execution model.

In particular, a linked list or other array-like data structure provides the proper primitives
storage and interface for DAG traversal. The properties of this data structure are:

• A unique vertex ID.

• A pointer to each child node.

• A key-value array to store properties (i.e. environment variables).

• A flag indicating whether the node has been visited or not.

Neither the time nor space complexity should increase in the implementation of the algorithm.
Since no additional looping or significant functionality is added beyond simple bookkeeping during
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traversal, both space and time complexity remain linear. The whole graph must be read into
memory, so the space complexity remains O(|V |). The time complexity remains O(|V |+ |E|).

1.6 A Reference Sequential Implementation

The sequential implementation of depth first search was done in the Perl scripting language. Be-
cause it is an interpreted language, we can expect the performance to be slower (in TEPS) than
a more performant, compiled program written in C, for example. The iterative version of the
algorithm was implemented due to how it interacts cleanly with the Perl environment and data
structures, namely the Perl hash structure.

The graph is represented as a Perl hash. Each element in the hash has a visited element,
representing whether it has been visited by the algorithm. The stack in the iterative algorithm is
implemented as a Perl array from which the vertices are pushed and popped. Rather than have
a separate function to determine which vertices are adjacent to the current one, the hash keeps a
record of a vertex’s neighbors. In this case, since every graph traversed is a DAG, neighbors are
child nodes.

1.7 Sequential Scaling Results

To evaluate the scalability of the sequential implementation of depth first search, synthetic DAGs
of different sizes were generated. The generator created a binary DAG. This means that each vertex
has at most two children. Some nodes only had one child. A pseudo-root and pseudo-leaf node
were added at the top and bottom of the DAG to ensure a clean beginning and end to the graph.

Each successive DAG was an order of magnitude larger than the previous. This is shown in
the left column of Table 1.7. Since only the scalability of DFS is to be measured, no debugging
measurements or bookkeeping was kept. The DFS algorithm was the only operation performed on
the generated graph. DFS was executed 100 times on each graph.

Vertices Avg. Time (s) Avg. TEPS

10 0.00003 361,347.81150

100 0.00027 375,014.11840

1,000 0.00272 367,753.35340

10,000 0.02108 500,512.47540

100,000 0.21075 476,622.42660

1,000,000 2.18351 458,047.21580

10,000,000 22.39310 446,715.40780

As expected from the complexity analysis of Section 1.4, the total time taken to traverse the
graph scales linearly with the order of magnitude increase of the graph size. This validates that
the sequential implementation of the algorithm remained lightweight in any additional bookkeeping
that was added. In addition, it is worth noting the average traversed edges per second (TEPS)
seemed to increase with scale. However, it is also worth noting that the experiments ran on a
production machine which is in an active computer cluster. The machine used had 8 cores, 32GB
of memory, and 2TB of disk space on the disk the experiment was executed. The experiment
consumed only a single core and eventually consumed all available memory when attempting to
scale to 100, 000, 000 vertices. The seeming increase in performance could simply be due to less load
on the machine at runtime of the later experiments. The granularity of this scalability benchmark
makes it impossible to know for sure why TEPS increased with the increased scale of the graph.
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1.8 Conclusion

The depth first search graph kernel was introduced as a potential candidate for distributed debug-
ging, alongside breadth first search as another potential candidate. The smaller memory footprint
of DFS, along with its behavior of searching an entire branch at a time, makes it the preferable
algorithm for analyzing debugging logs of distributed applications. Its linear time and space com-
plexities are demonstrated in two different implementations of a sequential algorithm, iterative and
recursive. Also discussed were the needs of an implementation for this algorithm.

A Perl implementation of the iterative sequential algorithm was presented along with a brief
evaluation of its scalability on a single production machine used in a research computing cluster
at the University of Notre Dame. The next step is to implement a parallel version of depth first
search and compare its performance to the sequential algorithm. It is expected that there is some
scale at which the parallel algorithm will outperform the sequential one.
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