
Higher Order Networks
& BuildHon+

Steven Krieg

The Problem

How do we represent big data as a network, while
accurately preserving dependencies?

Image from [2]

A Solution!

The Kernel: BuildHon

Algorithm used to construct the HON

Has 2 main steps:
1. Rule extraction
2. Network rewiring

Step 1: Rule Extraction
cur_ord = 1;
seqs = get_raw_sequences();
first_order = build_observations(seqs, cur_ord);
rules.append(first_order);

while (rules.last != empty AND current_order < MAX_ORDER) {
next_cands = get_next_order_candidates(rules.last);

 next_ord_obs = build_observations(seqs, cur_ord, next_cands);
next_rule = check_and_extend(rules.last, next_obs);

 rules.append(next_rule);
}

Step 1: Rule Extraction
1. Count the number of sequential node interactions at the first-order

(basically the normal network)
2. Normalize the distributions for each pairwise interaction
3. For each fork node, add the preceding step and see how that changes

the distribution of the sequence
4. If the change is “significant” (above a selected threshold), add a

second-order dependency and repeat the process recursively to
determine higher orders

Step 2: Rewire the Network
...

Time Complexity

where L is the count of records in the raw data;
N is the number of unique nodes in the raw data;
k is the maximum order of dependency;
Ri is the count of dependencies at order i

(*the theoretical upper bound is exponential but is not really helpful for
real data sets, in which orders of dependency tend to follow an inverse
power law)

Data Sets
● Synthetic web clickstreams (11 billion nodes)

○ Subsets with 1, 5, 10, 100 million nodes
● Global shipping data (3,415,577 voyages made by

65,591 ships between May 1st , 2012 and April 30th,
2013)

Implementation
● C++ implementation of Rule Extraction algorithm
● ~400 lines, not including header files & definitions
● (Close to the same as the original Python

implementation, minus a couple utilities)
● Mostly vectors for fast iteration, plus one

unordered_map (hash table)

Modules
build_observations(seqs, cur_ord, next_candidates=None):
for each c : next_candidates:

// get all sequences of length cur_ord with target c
// count all sequences and calculate out degree distribution

get_next_order_candidates(rules_base_order):
for each r : rules:

if r.confidence < THRESHOLD:
next_order_candidates.append(r)

Modules
check_and_extend(rules_base_order, next_order_obs):
for each r : rules_base_order:

// get all candidate extensions from next_order_obs
if (get_ext_significance(r, candidates) > EXT_THRESHOLD) {

next_order_rules.append(candidates);
}

return new_order_rules;

Initial Results
Number of Seq
Pairs

C++ Exec
Time (s) C++ # Rules

Python Exec
Time (s)

Python #
Rules

1m 22.32 440 26.01 212

5m 328.52 2,200 116.12 1160

10m 1321.26 4400 -- (crashed) --

Future Work
● Scrap the Rule Extraction? :-(
● Possible parallel implementation of Network

Rewiring
○ Giraph or Stinger?
○ Need to think more through use case

● Possible method for validating network
representation

● [1] Xu, J., Wickramarathne, T., & Chawla, N. (2016). Representing
higher-order dependencies in networks. Science Advances, 2(5),
E1600028.

● [2] http://www.higherordernetwork.com/
● [3] https://github.com/xyjprc/hon
● [4] Xu, J., Saebi, M., Ribeiro, B., Kaplan, L., & Chawla, N. (2017). Detecting

Anomalies in Sequential Data with Higher-order Networks.
● [5] Cui Jiao, Guo Jun, Zhang Cangsong, & Chang Xiaojun. (2012).

Implementation of random walk algorithm by parallel computing. Fuzzy
Systems and Knowledge Discovery (FSKD), 2012 9th International
Conference on, 2477-2481.

● [6] Fournier-Viger, P., Nkambou, R., & Tseng, V. S. M. (2011, March).
RuleGrowth: mining sequential rules common to several sequences by
pattern-growth. In Proceedings of the 2011 ACM symposium on applied
computing (pp. 956-961). ACM.

http://www.higherordernetwork.com/
https://github.com/xyjprc/hon

