UNIVERSITY OF
NOTRE DAME

Depth-First Search and Its Use Case in
Distributed Systems Debugging

Nate Kremer-Herman

PYTHONINSPECT

PYTHONDONTWRITEBYTECODE

_

OPENSSL _ia32cap

ssh

git

PYTHONDEBUG

GIT_DIR

GIT_WORK_TREE

git

GIT_CONFIG

PATH

git

GIT_DIR

GIT_ALTERNATE_O

/usr/libexec/. gcc/x86_64—rcdhj

/

Depth-first search kernel

Given a large graph.

Start at a root node.

Find all reachable vertices.
Measured in TEPS, just like BFS.

Worst case performance:
O(IV] + IEI)

Iterative pseudocode

1
2
3
4
d
6
7/
8
9

procedure DFS-iterative(G,v):
let S be a stack
S.push(v)
while S is not empty
v =3S.pop()
if vis not labeled as discovered:
label v as discovered
for all edges from v to w in G.adjacentEdges(v) do
S.push(w)

Implementation techniques

Implemented in Perl
Regex matching
Data structures

Used the iterative algorithm
Can only use recursion to a certain depth
Faster albeit less elegant

s essentially a bottom-up DFS (kinda)
| cheat and make the leaves the roots

For Perl
wizards:

Notional summary (for everyone else)

1 procedure DFS-iterative(G,v):

2 pushvonastack, S

4 while S is not empty

5 v =S.pop()

6 if v has not been visited in this round:
7 label v as visited

8 for all child edges of v do

9

1

if child has a matching attribute with v:
0 S.push(child)

Updated complexity analysis

Algorithm is still O(]V| + |E|)
Worst case, we ook at all vertices
Best case, we look at no vertices

Added overhead for attribute analysis
We only keep vertices which share
attributes (for debugging)
Attribute checking slows down traversal
by an order of magnitude or two (fun)

Measured performance in TEPS
Captured error nodes in separate graphs
Examples to come

All datasets are currently synthetic
Each is a binary graph
Generated via Perl script

Number of nodes ranges from 10 - 1,000,000
Realistic dataset size O(100) - 0(10,000)
Tiny: 10 nodes
Small: 700 nodes

6o|ossa|: 1,000,000 nodes
Any bigger runs into memory limitations

Small DAG example:

Only 100 nodes

Still a headache to
parse through by hand.

No highlighting of failed
task lineage! | have to
switch between a debug
log and this graph.

Much more
manageable
output per
failed task.

Sometimes a
task fails on
its own, not
because of a
previous task.

Implementation performance results

Only Traversal Traversal + Computation
Nodes TEPS Nodes TEPS

10 361,347.81 6 (10) 60,676.46
100 375,014.11 71 (100) 74,231.57
1,000 367,753.35 872 (1,000) 69,404.00
10,000 500,512.47 9,724 (10,000) 118,423.95
100,000 476,622.42 99,032 (100,000) 99,258.17
1,000,000 458,047.21 | | 998,270 (1,000,000) 120,060.52

Plans for parallel implementation

Use Work Queue master-worker framework to
parallelize traversal
Cascading traversal pattern
May not be faster than serial implementation
for a realistic dataset (resource acquisition)

Use real data if there is time
Only roadblock is transforming debug logs into
graphs, traverser is done
Each type of log has its own syntax, so each
requires a handwritten parser

UNIVERSITY OF

“5) NOTRE DAME

