
Depth-First Search and Its Use Case in
Distributed Systems Debugging

Nate Kremer-Herman

2

Depth-first search kernel

Given a large graph.
Start at a root node.
Find all reachable vertices.
Measured in TEPS, just like BFS.

Worst case performance:
O(|V| + |E|)

3

4

Iterative pseudocode

1 procedure DFS-iterative(G,v):
2 let S be a stack
3 S.push(v)
4 while S is not empty
5 v = S.pop()
6 if v is not labeled as discovered:
7 label v as discovered
8 for all edges from v to w in G.adjacentEdges(v) do
9 S.push(w)

Implementation techniques

▰ Implemented in Perl
▻ Regex matching
▻ Data structures

▰ Used the iterative algorithm
▻ Can only use recursion to a certain depth
▻ Faster albeit less elegant

▰ Is essentially a bottom-up DFS (kinda)
▻ I cheat and make the leaves the roots 5

Pseudocode

6

For Perl
wizards:

7

Notional summary (for everyone else)

1 procedure DFS-iterative(G,v):
2 push v on a stack, S
4 while S is not empty
5 v = S.pop()
6 if v has not been visited in this round:
7 label v as visited
8 for all child edges of v do
9 if child has a matching attribute with v:
10 S.push(child)

8

Updated complexity analysis

▰ Algorithm is still O(|V| + |E|)
▻ Worst case, we look at all vertices
▻ Best case, we look at no vertices

▰ Added overhead for attribute analysis
▻ We only keep vertices which share

attributes (for debugging)
▻ Attribute checking slows down traversal

by an order of magnitude or two (fun)

Metrics

▰ Measured performance in TEPS
▰ Captured error nodes in separate graphs

▻ Examples to come

9

Datasets

▰ All datasets are currently synthetic
▻ Each is a binary graph
▻ Generated via Perl script

▰ Number of nodes ranges from 10 - 1,000,000
▻ Realistic dataset size O(100) - O(10,000)
▻ Tiny: 10 nodes
▻ Small: 100 nodes
▻ …
▻ Colossal: 1,000,000 nodes
▻ Any bigger runs into memory limitations 10

11

Small DAG example:

Only 100 nodes

Still a headache to
parse through by hand.

No highlighting of failed
task lineage! I have to
switch between a debug
log and this graph.

12

Much more
manageable
output per
failed task.

13

Sometimes a
task fails on
its own, not
because of a
previous task.

Implementation performance results

14

Nodes TEPS

10 361,347.81

100 375,014.11

1,000 367,753.35

10,000 500,512.47

100,000 476,622.42

1,000,000 458,047.21

Nodes TEPS

6 (10) 60,676.46

71 (100) 74,231.57

872 (1,000) 69,404.00

9,724 (10,000) 118,423.95

99,032 (100,000) 99,258.17

998,270 (1,000,000) 120,060.52

Only Traversal Traversal + Computation

Plans for parallel implementation

▰ Use Work Queue master-worker framework to
parallelize traversal
▻ Cascading traversal pattern
▻ May not be faster than serial implementation

for a realistic dataset (resource acquisition)

▰ Use real data if there is time
▻ Only roadblock is transforming debug logs into

graphs, traverser is done
▻ Each type of log has its own syntax, so each

requires a handwritten parser 15

16

Questions?

