Distributed Bipartite
Matching

Brian A. Page
bpagelnd.edu
November 8, 2018

pz SN |

The College of Engineerings ¢

ar the University of Notre Dame




Bipartite Matching

I
<

 Matching (M) is set of edges such that E(u,v)

e \/ertices incident to only one edge in M
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DMBM: Kernel Cont.
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® Partition Graph based on one set of vertices
® Distribute vertices and associated edge lists to processes

® Better partitioning can be created but at greater cost
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DMBM: Kernel

P, = P, P,
M| =4
e Updates must be when vertex is matched

e Similar to Push-Relabel

® Lots of communication required
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DMBM: Kernel Cont.

Given a graph G(V(u,v), E(ui,vj)):

augment path| uid) {

viciter
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DMBM: Kernel Cont.

Given a graph G(V(u,v), E(ui,vj)), and process count P:

distribute vertex and edge list assignments
omp fori < u,.size() do
augmentPath(u))
if E(vj) contains u, st u ¢ u
notify P, assigned u, of v, visitation
if notified (vj)

augmentPath(vj)

gather matchings

end
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Problem 1: Partitioning
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® |f Scale Free graphs are used, the partitioning can become

highly skewed

® |mbalance causes communication hotspots

® Concerned with vertex count AND edge count
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Problem 2: Communication
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e Communication at core of compute phase
® [Message volume and interconnect becomes dominant

factor

® Does NOT scale well!l
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DMBM: Time Complexity

* Ford-Fulkerson: O(VE?)
e Hopcroft-Karp: O(|E|V(V))

 Distributed MBM: O(O(VE?)+VIg(P))
— not 100% on this...
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DMBM: Data Sets

Suite Sparse Matrix Collection
https://sparse.tamu.edu

Largest undirected biparite graph:

e 12,471 x 872,622 (885,093 total vertices)
e 22,624,727 edges
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https://sparse.tamu.edu

DMBM: Present and Future

Presently:

* |t works!
e Performance is abysmal

Future:

 |Implement Hopcroft-Karp to see if communication is
reduced

 HavoqGT vertex-centric framework
e Communication may be unavoidable
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DMBM: Ray of Hope

Steps in an iteration of MS-BFS ‘ ’ Graph Representation ‘ Vector representation ‘ Matrix-algebraic operations
_+ f, € column frontier | @ @ @ I (1,1) [(2,2) I |(5,5)|
& NN
f. € neighbors of f, @ @@ @ @ | | | | | | Sparse matrix-vector multiply
Step 1 (unique-parent) i i (1,D],1)]2.2)](5,5))(5,5) (select2nd, minParent) semiring
Step 2 ’ f. € unvisited vertices in f, ‘ @ @@ @ @ |(1,1)|(1,1)|(2,2)|(5,5)|(5,5)| Select elements from a vector
‘ i
Step 3 uf, € unmatched vertices in f, ‘ @ @ @ |(1,1)|(1’1)| |(5’5)| | Select elements from a vector
‘ i
Step 4 ‘ f. € matched verticesin f, l ® ® | | |(2,2)| |(5,5)| Select elements from a vector
e
yes
{ i Invert index and
Step 5 path, € ends of aug. paths i i | 1 l | | | 4 | ‘
P (remove duplicates) { @ @ i value (root) of a vector
¥
f, € remove each vertex from Prune elements from a vector
Step 6 f, whose root is in roots of uf, @ (3.2) Set parents to mates
L 2
3,2 | | | Invert index and
Step 7 -.‘ f. € mates of f, @ | | |( ) value (parent) of a vector
I

Ariful Azad, Aydin Buluc (LBNL)

e Sparse algebra based Distributed MCM
 SpMV plays significant role
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DMBM: Ray of Hope Cont.
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Fig. 5: Runtime breakdown of MCM-DIST for four representative graphs using 12 threads per MPI process on Edison.
(a) ER (b) G500 (c) SSCA
64 64 1 64
.16 .16 1 .16
[$) [) [)
(0] (0] (0]
8 & &
g° g° ' ' 1 &°
[= = =
4} —O— Scale-30 4} —0— Scale-30 4} —0— Scale-30
—&— Scale-29 —&— Scale-29 —£&— Scale-29
2 —»*— Scale-28 2 —*— Scale-28 2 —+*— Scale-28
~{ Scale-27 O Scale-27 {0 Scale-27
——Scale-26] s : ——Scale-26] —*+—Scale-26] ! :
128 256 512 1024 2048 4096 8192 16384 164 128 256 512 1024 2048 4096 8192 16384 %4 128 256 512 1024 2048 4096 8192 16384

Number of Cores

Number of Cores

Number of Cores

Fig. 6: Strong scaling of MCM-DIST when computing maximum matching on three classes of randomly generated graphs

with five different scales on Edison.
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