Distributed Bipartite Matching

Brian A. Page
bpage1nd.edu
November 8, 2018

The College of Engineering at the University of Notre Dame

Bipartite Matching

- Matching (M) is set of edges such that $E(u, v)$
- Vertices incident to only one edge in M

The College of Engineering at the University of Notre Dame

DMBM: Kernel Cont.

- Partition Graph based on one set of vertices
- Distribute vertices and associated edge lists to processes
- Better partitioning can be created but at greater cost

The College of Engineering at the University of Notre Dame

DMBM: Kernel

$|M|=4$

- Updates must be when vertex is matched
- Similar to Push-Relabel
- Lots of communication required

The College of Engineering

 at the University of Notre Dame
DMBM: Kernel Cont.

Given a graph $G\left(V(u, v), E\left(u_{i}, v_{j}\right)\right)$:

```
bool augment path(uint uid) {
    visited[uid] = true;
    for (uint i = 0; i < graph[uid].size(); i++) {
        uint neighbour = graph[uid][i];
        if (visited[neighbour]) {
            continue;
        }
        // Base-case. We've reached a node at the end of an alternating path that
        // ends in a freenode
        if (matched[neighbour] == UNMATCHED) {
            matched[uid] = neighbour;
            matched[neighbour] = uid;
            return true;
        } else if (matched[neighbour] != uid) {
            // This is not your standard DFS. Because we're DFSing along an
            // alternating path, when we choose the next vertex to visit, we MUST
            // then go along its matching edge. So we say we've visited the neighbour
            // trivially and then recursing on matched[neighbour].
            visited[neighbour] = true;
            if (augment path(matched[neighbour])) {
                matched[uid] = neighbour;
                    matched[neighbour] = uid;
                    return true;
            }
        }
    }
    return false;
```


DMBM: Kernel Cont.

Given a graph $G\left(V(u, v), E\left(u_{i}, v_{j}\right)\right)$, and process count P :
distribute vertex and edge list assignments
omp for $\mathrm{i}<\mathrm{u}_{\mathrm{p}}$.size() do
augmentPath(u_{i})
if $E\left(v_{j}\right)$ contains u_{i} st $u_{i} \notin u_{p}$ notify P_{k} assigned u_{i} of v_{j} visitation
if notified (v_{j})

$$
\text { augmentPath }\left(v_{j}\right)
$$

gather matchings
end

The College of Engineering at the University of Notre Dame

Problem 1: Partitioning

- If Scale Free graphs are used, the partitioning can become highly skewed
- Imbalance causes communication hotspots
- Concerned with vertex count AND edge count

The College of Engineering at the University of Notre Dame

Problem 2: Communication

- Communication at core of compute phase
- Message volume and interconnect becomes dominant factor
- Does NOT scale well!!

The College of Engineering at the University of Notre Dame

DMBM: Time Complexity

- Ford-Fulkerson: $\mathrm{O}\left(\mathrm{VE}^{2}\right)$
- Hopcroft-Karp: O(|E| $\sqrt{ }(\mathrm{V}))$
- Distributed $\mathrm{MBM}: \mathrm{O}\left(\mathrm{O}\left(\mathrm{VE}^{2}\right)+\mathrm{Vlg}(\mathrm{P})\right)$
- not 100% on this...

The College of Engineering at the University of Notre Dame

DMBM: Data Sets

Suite Sparse Matrix Collection https://sparse.tamu.edu

Largest undirected biparite graph:

- $12,471 \times 872,622$ (885,093 total vertices)
- 22,624,727 edges

The College of Engineering at the University of Notre Dame

DMBM: Present and Future

Presently:

- It works!
- Performance is abysmal

Future:

- Implement Hopcroft-Karp to see if communication is reduced
- HavoqGT vertex-centric framework
- Communication may be unavoidable

The College of Engineering at the University of Notre Dame

DMBM: Ray of Hope

Ariful Azad, Aydin Buluc (LBNL)

- Sparse algebra based Distributed MCM
- SpMV plays significant role

The College of Engineering at the University of Notre Dame

DMBM: Ray of Hope Cont.

Fig. 5: Runtime breakdown of MCM-DIST for four representative graphs using 12 threads per MPI process on Edison.

Fig. 6: Strong scaling of MCM-DIST when computing maximum matching on three classes of randomly generated graphs with five different scales on Edison.

The College of Engineering at the University of Notre Dame

