Bipartite Matching

- Matching (M) is set of edges such that $E(u,v)$
- Vertices incident to only one edge in M
DMBM: Kernel Cont.

- Partition Graph based on one set of vertices
- Distribute vertices and associated edge lists to processes
- Better partitioning can be created but at greater cost
DMBM: Kernel

- Updates must be when vertex is matched
- Similar to Push-Relabel
- Lots of communication required

|\(|M| = 4\)|
Given a graph $G(V(u,v), E(u_i, v_j))$:

```c
bool augment_path(uint uid) {
    visited[uid] = true;

    for (uint i = 0; i < graph[uid].size(); i++) {
        uint neighbour = graph[uid][i];
        if (visited[neighbour]) {
            continue;
        }

        // Base-case. We've reached a node at the end of an alternating path that
        // ends in a free node.
        if (matched[neighbour] == UNMATCHED) {
            matched[uid] = neighbour;
            matched[neighbour] = uid;
            return true;
        } else if (matched[neighbour] != uid) {
            // This is not your standard DFS. Because we're DFSing along an
            // alternating path, when we choose the next vertex to visit, we MUST
            // then go along its matching edge. So we say we've visited the neighbour
            // trivially and then recursing on matched[neighbour].
            visited[neighbour] = true;
            if (augment_path(matched[neighbour])) {
                matched[uid] = neighbour;
                matched[neighbour] = uid;
                return true;
            }
        }
    }

    return false;
}
```
DMBM: Kernel Cont.

Given a graph $G(V(u,v), E(u_i,v_j))$, and process count P:

distribute vertex and edge list assignments
omp for $i < u_p$.size() do
 augmentPath(u_i)
 if $E(v_j)$ contains u_i st $u_i \notin u_p$
 notify P_k assigned u_i of v_j visitation
 if notified (v_j)
 augmentPath(v_j)

gather matchings
end
Problem 1: Partitioning

- If Scale Free graphs are used, the partitioning can become highly skewed
- Imbalance causes communication hotspots
- Concerned with vertex count AND edge count
Problem 2: Communication

- Communication at core of compute phase
- Message volume and interconnect becomes dominant factor
- Does NOT scale well!!
DMBM: Time Complexity

- Ford-Fulkerson: $O(VE^2)$
- Hopcroft-Karp: $O(|E|^{1/2}(V))$
- Distributed MBM: $O(O(VE^2)+V\lg(P))$
 - not 100% on this...
DMBM: Data Sets

Suite Sparse Matrix Collection
https://sparse.tamu.edu

Largest undirected biparite graph:
• 12,471 x 872,622 (885,093 total vertices)
• 22,624,727 edges
DMBM: Present and Future

Presently:
- It works!
- Performance is abysmal

Future:
- Implement Hopcroft-Karp to see if communication is reduced
- HavoqGT vertex-centric framework
- Communication may be unavoidable
Ariful Azad, Aydin Buluc (LBNL)

- Sparse algebra based Distributed MCM
- SpMV plays significant role
Fig. 5: Runtime breakdown of MCM-DIST for four representative graphs using 12 threads per MPI process on Edison.

Fig. 6: Strong scaling of MCM-DIST when computing maximum matching on three classes of randomly generated graphs with five different scales on Edison.