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Do Dilemmas Occur Naturally?



Kernel: MiniMax with DFS

Def MiniMax(root)
If(root.children.size() == 9)
Return root.preferences
best_outcome = -inf
result = Null
For child in root.children
child_result = MiniMax(child)
If(child_result[root.player_id] > best_outcome)
best_outcome = child_result[root.player_id]
result = child_result
Return result



Complexity

Number of players: p
Number of vertices: v
Number of edges: e = v - 1 because its a tree.

MiniMax with DFS: O(p(v + e)) = O(pv)
Game Tree Generation: O(pv)

Checking Optimality of Result: O(pv)



Implementation

e DFS: Boost Graph Library (C++)

o Overload “DFS Visitor” class

e Game Generation

Custom C++ code

Boost graph format

Players’ preferences are strict orderings (all >, no >=).

“Player i prefers A over B” tells you nothing about Player j's preferences.
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Experiment Setup

Run 1000 trials for each parametrization:

e Vary number of players from 2 to 5
e Vary number of game tree nodes from 10 to 1,000,000

e Balanced Trees
o Vary degree from 2 to 32

e “Chain” Trees

o Every decision node has one stop-edge leading to a final outcome and one continue-edge.
o Example:

IR




2 Player Balanced Tree Games
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3 Player Balanced Tree Games
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4 Player Balanced Tree Games
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5 Player Balanced Tree Games
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2 Player Chain Games
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2 Player Chain Games
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4 Player Chain Games
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3 Player Chain Games
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Runtime Scaling with Game Size
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Runtime Scaling with Number of Players
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Future Work

e Parallelize DFS

o May require locks in DFS visitor?

e Parallelize Game Generation
o Need to learn MPI?

e Rather than running a single test in parallel, run different tests on different
processes? (Less interesting. Might waste memory.)
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