
Simulating Extensive-Form 
Dilemmas

Justus Hibshman - 11/08/18

1



Dilemmas:

2

“Ok.” “Wonderful!” “Ugh.”

“Ugh.” “Ok.” “Wonderful!”

P1

P2



Dilemmas:

3

“Ok.”

“Ugh.”

“Wonderful!”

“Ok.”

“Ugh.”

“Wonderful!”



Do Dilemmas Occur Naturally?

4

...

... ...

... ...

...

... ...

...

... ...



Kernel: MiniMax with DFS
Def MiniMax(root)

If(root.children.size() == 0)
Return root.preferences

best_outcome = -inf
result = Null
For child in root.children

child_result = MiniMax(child)
If(child_result[root.player_id] > best_outcome)

best_outcome = child_result[root.player_id]
result = child_result

Return result
5



Complexity
Number of players: p
Number of vertices: v
Number of edges: e = v - 1 because its a tree.

MiniMax with DFS: O(p(v + e)) = O(pv)

Game Tree Generation: O(pv)

Checking Optimality of Result: O(pv)

6



Implementation
● DFS: Boost Graph Library (C++)

○ Overload “DFS Visitor” class

● Game Generation
○ Custom C++ code
○ Boost graph format
○ Players’ preferences are strict orderings (all >, no >=).
○ “Player i prefers A over B” tells you nothing about Player j’s preferences.

7



Experiment Setup
Run 1000 trials for each parametrization:

● Vary number of players from 2 to 5
● Vary number of game tree nodes from 10 to 1,000,000
● Balanced Trees

○ Vary degree from 2 to 32

● “Chain” Trees
○ Every decision node has one stop-edge leading to a final outcome and one continue-edge.
○ Example:

8



9

Degree:

2

4

8

16

32



10

Degree:

2

4

8

16

32



11

Degree:

2

4

8

16

32



12

Degree:

2

4

8

16

32



13



14



15



16



Future Work
● Parallelize DFS

○ May require locks in DFS visitor?

● Parallelize Game Generation
○ Need to learn MPI?

● Rather than running a single test in parallel, run different tests on different 
processes? (Less interesting. Might waste memory.)

17


