Simulating Extensive-Form

Dilemmas
Justus Hibshman - 11/08/18

Dilemmas:

P1

P2

“Ok.”

“Ugh.”

“Wonderful!”

“Ok.”

“Ugh.”

“Wonderful!”

Dilemmas:

I
2

“‘Ok.”
“Ugh_h / \
“Wonderful!” “Ugh.”
“Ok.” “Wonderful!”

Do Dilemmas Occur Naturally?

Kernel: MiniMax with DFS

Def MiniMax(root)
If(root.children.size() == 9)
Return root.preferences
best_outcome = -inf
result = Null
For child in root.children
child_result = MiniMax(child)
If(child_result[root.player_id] > best_outcome)
best_outcome = child_result[root.player_id]
result = child_result
Return result

Complexity

Number of players: p
Number of vertices: v
Number of edges: e = v - 1 because its a tree.

MiniMax with DFS: O(p(v + e)) = O(pv)
Game Tree Generation: O(pv)

Checking Optimality of Result: O(pv)

Implementation

e DFS: Boost Graph Library (C++)

o Overload “DFS Visitor” class

e Game Generation

Custom C++ code

Boost graph format

Players’ preferences are strict orderings (all >, no >=).

“Player i prefers A over B” tells you nothing about Player j's preferences.

O O O O

Experiment Setup

Run 1000 trials for each parametrization:

e Vary number of players from 2 to 5
e Vary number of game tree nodes from 10 to 1,000,000

e Balanced Trees
o Vary degree from 2 to 32

e “Chain” Trees

o Every decision node has one stop-edge leading to a final outcome and one continue-edge.
o Example:

IR

2 Player Balanced Tree Games

Percent Outcomes Pareto Optimal (1000 trials)

Degree:
1 -2
- 4
= 8
0.8 = 16
- 32

0.6

0.4
10 100 1000 10000 100000 1000000

Size of Game (# Tree nodes)

3 Player Balanced Tree Games

Percent Outcomes Pareto Optimal (1000 trials)

Degree:
1 -2
- 4
= 8
0.8 = 16
- 32

0.6

0.4
10 100 1000 10000 100000 1000000

Size of Game (# Tree nodes)
10

4 Player Balanced Tree Games

Percent Outcomes Pareto Optimal (1000 trials)

Degree:
! - 2
- 4
— - 8
0.8 = 16
- 32

0.6

0.4
10 100 1000 10000 100000 1000000

Size of Game (# Tree nodes)
11

5 Player Balanced Tree Games

Percent Outcomes Pareto Optimal (1000 trials)

Degree:
1 NS w— 2
— - 4
= 8
0.8 . - 16
— - 32

0.6

0.4
10 100 1000 10000 100000 1000000

Size of Game (# Tree nodes)
12

2 Player Chain Games

0

c_u

y= 0.5
o

S

=

S

E

o 0.
(]

©

& 005
o

(%]

(]

£

o

(@]

5

(@]

= 0.0
()]

o

(O]

a 10 100

1000 10000

Size of Games (# Tree Nodes)

100000

1000000

13

2 Player Chain Games

7

<

£ 05
o

o

o

©

E

§ o1
o

s

5 005
a

123

Qo

£

o

(3}

5

o

£ 001
[}

©

7

o 10 100

4 Player Chain Games

0.5

0.1
0.05

0.01
0.005

0.001

Percent Outcomes Pareto Optimal (1000 trials)

1000 10000

Size of Games (# Tree Nodes)

1000 10000

Size of Games (# Tree Nodes)

100000

100000

1000000

1000000

3 Player Chain Games

o

3

= 0.5
o

o

o

©

£

8

° o1
5

=

o 0.05
1%

GJ

£

o

o

E

o

g

g 0.01
[

« 10 100 1000 10000 100000 1000000

Size of Games (# Tree Nodes)

5 Player Chain Games

7

K

E 05
o

=

w

E

&

S b4
©

& o005
173

[

£

[s}

O

5

(o]

5 001
©

7

= 10 100 1000 10000 100000 1000000

Size of Games (# Tree Nodes)

Runtime Scaling with Game Size

T

£ 1000000000
[=

2

o

[=

v

5 100000000
€

(]

E

8 10000000
o

ks

£

= 1000000
=

o

(]

o

©

&

& 10 100 1000 10000 100000 1000000

Number of Nodes in Game Tree

2 Players Runtime
3 Players Runtime
4 Players Runtime

5 Players Runtime

15

Runtime Scaling with Number of Players

14
(]
(%]
©
©
(@]
£
= 1.3
(]
o
(O]
0o
()]
E 12
=
=
Yz
=
(]
E 11
(]
o
>
Ll
©
= 1
2 3 4 5

Number of Players
16

Future Work

e Parallelize DFS

o May require locks in DFS visitor?

e Parallelize Game Generation
o Need to learn MPI?

e Rather than running a single test in parallel, run different tests on different
processes? (Less interesting. Might waste memory.)

17

