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Graph Kernel: Random Walk Pseudocode

A Random Walk:

 2

Given a graph G(V, E) where V is a set of vertices, and E is a set of edges .
1. Select an arbitrary starting node u in G .
2. Randomly select a neighbor of u, say v .
3. Move across the edge (u, v) , let u < − v and repeat steps 2 and 3... or stop .

Complexity: It depends on the purpose(stopping criteria) of the walk.  

• For practically all scenarios: Ω(RW) = Ω(|V|+|E|) for basic traversal



Random Walk Applications
• Modeling diffusion (Brownian, epidemics, mosquitos, etc.) 

• Sampling from large networks (embeddings, grammars, etc.) 

• Fun games (Conway’s Game of Life… others?) 

 3



Data Set Considerations
Changes in epidemic transmission behaviors rely on many network 
properties:

Recovery Time, Epidemic Infectiousness, Average Node Degree, 
Clustering Propensity, and many more.
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Data Sets: Real-world Networks
Advantages: 

Results are more meaningful 

Disadvantages:  

Scaling via subsetting real-world datasets is hard 
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Data Sets: Synthetic Networks
Advantages:  

Scaling is easy and repeatable. 

Disadvantages:  

The networks may not accurately represent a real-world scenario 

Source: 

Temporal Graph Generation Based on a Distribution of Temporal Motifs 
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Random Walk Application: Simple Epidemic 
Transmission using Grids
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1. At t0 each room contains a person, and 
one person is infectious and if in contact 
with a susceptible person will infect 
them with probability p. 

2. Between each time step, each person 
has a probability λ to move from one 
room to another, with a uniform 
probability between the rooms they have 
access to. 

3.Each infectious person has a μ 
probability of recovering at each time 
step after their initial infection.
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Random Walk Application: Simple Epidemic 
Transmission using Grids Example
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t0

Let p = 0.5, λ = 0.5, and μ = 0.25



Random Walk Application: Simple Epidemic 
Transmission using Grids Example
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t1

Let p = 0.5, λ = 0.5, and μ = 0.25



Random Walk Application: Simple Epidemic 
Transmission using Grids Example
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t2

Let p = 0.5, λ = 0.5, and μ = 0.25



Random Walk Application: Simple Epidemic 
Transmission using Grids Example
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t3

Let p = 0.5, λ = 0.5, and μ = 0.25



Random Walk Application: Simple Epidemic 
Transmission using Grids Example
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1. Transportation networks can be converted to planar networks 
by duplicating confounding nodes and edges. 

2. Fáry's theorem says that any planar network can be 
represented via a grid layout 

3. Simple Grid Model is extensible, but becomes a less intuitive 
abstraction. 



Simplified Grid Random Walk
Language: Boost Graph Library 

Basic Structures: 
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Simplified Grid Random Walk
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Complexity:

convergenceRate is based on the graph structure distribution of p, λ, and μ, and has yet 
to be thoroughly analyzed, but appears that  

Runtime Analysis:

System already distributing simple operations.

O( |V | *
1

convergenceRate )

O(convergenceRate−1) < O(n2)



Simplified Grid Random Walk
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Future Steps
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Random Walking + Dynamic Weights: Parallel 
Implementation
Refactor for parallelism using Parallel Boost 

Change graph type from grid for greater flexibility 

Work on graph partitioning strategy for different distributions 

Analyze hyper-parameter sensitivity (p,λ,μ)

 17



Questions? 





Random Walk Application: Epidemic 
Transmission 
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Let Ii be the set of infective vertices at time ti .
Let New_Ii = Ii − Ii−1

Let Ti(u, v) = transition count from u to v at time ti .

This can be defined in many ways. 

Define: IRi(u) =
ipopi(u)
popi(u)

Transferi(u, v) = contact between u and v
beteeen time ti−1 and ti .

Ti(u, v) = Transferi(u, v) × IRi−1(u)



Random Walk Application: Epidemic 
Transmission 
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Factors not being considered:
1. Random Spread 
2. Disease Carriers 
3. Non-Random Distribution of Carriers 
4. Population Shift 
5. Inanimate Disease Vectors 



Random Walk Application: Epidemic 
Transmission 
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I0 = {}

At time t0 there are no infective vertices. But 
they are all susceptible.

IR0(v ∈ V) =
ipopi(v)
popi(v)

=
0

pop(v)



Random Walk Application: Epidemic 
Transmission 

 23

A

D

B

C

t1

I1 = {D}
New_I1 = I1 − I0 = {D}
IR1(D) = 1/100 = .01

T2(D, A) = Transfer2(D, A) × IR1(D) = 1
T2(D, B) = Transfer2(D, B) × IR1(D) = .2

Ti(u, v) = Transferi(u, v) × IRi−1(u)



Random Walk Application: Epidemic 
Transmission 
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I2 = {D, A}
New_I2 = I2 − I1 = {A}

What is the probability that vertex A 
was infected via vertex D

Transfer2(B, A) = 20 people
Transfer2(C, A) = 50 people
Transfer2(D, A) = 100 people
T2(B, A) = Transfer2(B, A) × IR1(B) = 0
T2(C, A) = Transfer2(C, A) × IR1(C) = 0
T2(D, A) = Transfer2(D, A) × IR1(D) = 1

likelihood(A < − D |A ∈ New_I2) ∝
T2(D, A)

∑
v∈Adj(A)

T2(v, A)



Random Walk Application: Epidemic 
Transmission 
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I3 = {D, A, B}
New_I3 = I3 − I2 = {B}

Through which vertex is B more 
likely to be infected?

Transfer3(A, B) = 100 people
Transfer3(D, B) = 100 people

T3(A, B) = Transfer3(A, B) × IR2(A) = 0
T3(D, B) = Transfer3(D, B) × IR2(D) = 0

likelihood(A < − D |A ∈ New_I2) ∝
T2(A, D)

∑
v∈Adj(A)

T2(v, A)


