Random Walking with a Purpose

Trenton W. Ford
CSE 60742
Graph Kernel: Random Walk Pseudocode

A Random Walk:

Given a graph $G(V, E)$ where V is a set of vertices, and E is a set of edges.
1. Select an arbitrary starting node u in G.
2. Randomly select a neighbor of u, say v.
3. Move across the edge (u, v), let $u < - v$ and repeat steps 2 and 3... or stop.

Complexity: It depends on the purpose(stopping criteria) of the walk.
- For practically all scenarios: $\Omega(RW) = \Omega(|V|+|E|)$ for basic traversal
Random Walk Applications

- Modeling diffusion (Brownian, epidemics, mosquitos, etc.)
- Sampling from large networks (embeddings, grammars, etc.)
- Fun games (Conway’s Game of Life… others?)
Data Set Considerations

Changes in epidemic transmission behaviors rely on many network properties:

Recovery Time, Epidemic Infectiousness, Average Node Degree, Clustering Propensity, and many more.
Data Sets: Real-world Networks

Advantages:

Results are more meaningful

Disadvantages:

Scaling via subsetting real-world datasets is hard

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Approximate Order</th>
<th>Approximate Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOT Railway Data</td>
<td>196K</td>
<td>250K</td>
</tr>
<tr>
<td>SNAP Airport Data</td>
<td>456</td>
<td>71K</td>
</tr>
<tr>
<td>KNB Shipping Data</td>
<td>3700</td>
<td>15K</td>
</tr>
</tbody>
</table>
Data Sets: Synthetic Networks

Advantages:

Scaling is easy and repeatable.

Disadvantages:

The networks may not accurately represent a real-world scenario.

Source:

Temporal Graph Generation Based on a Distribution of Temporal Motifs
Random Walk Application: Simple Epidemic Transmission using Grids

1. At t_0 each room contains a person, and one person is infectious and if in contact with a susceptible person will infect them with probability p.
2. Between each time step, each person has a probability λ to move from one room to another, with a uniform probability between the rooms they have access to.
3. Each infectious person has a μ probability of recovering at each time step after their initial infection.
Random Walk Application: Simple Epidemic Transmission using Grids Example

Let $p = 0.5$, $\lambda = 0.5$, and $\mu = 0.25$
Let $p = 0.5$, $\lambda = 0.5$, and $\mu = 0.25$
Random Walk Application: Simple Epidemic Transmission using Grids Example

Let $p = 0.5$, $\lambda = 0.5$, and $\mu = 0.25$
Let $p = 0.5$, $\lambda = 0.5$, and $\mu = 0.25$
Random Walk Application: Simple Epidemic Transmission using Grids Example

1. Transportation networks can be converted to planar networks by duplicating confounding nodes and edges.

2. Fáry's theorem says that any planar network can be represented via a grid layout.

3. Simple Grid Model is extensible, but becomes a less intuitive abstraction.
Simplified Grid Random Walk

Language: Boost Graph Library

Basic Structures:

```cpp
struct VertexProperties{
    struct step_data{};
    step_data current_step;
    step_data future_step;
    uint row = 0;
    uint col = 0;
    static boost::random::mt19937 rng;
    static boost::random::uniform_real_distribution<double> gen;
    static constexpr float p = 0.5; // Infection Probability
    static constexpr float lamb = 0.5; // Movement Probability
    static constexpr float mu = 0.25; // Recovery Probability
    VertexProperties(){};
    VertexProperties(uint r, uint c, uint pop){}
    void infect{};
    void recover{};
    void update{};
    void set_current_values(pop, ipop, spop){}
    void adjust_future_values(pop = 0, ipop = 0, spop = 0){}
    void advance_timestep{};
};

#include <boost/graph/grid_graph.hpp>
typedef grid_graph<2> GraphType;
```

```cpp
for (uint i = 0; i < DIMENSIONS; ++i)
    for (uint j = 0; j < DIMENSIONS; ++j)
        Vertex v = Traits::vertexDescriptor {{i, j}}
        vertex_data = get(dataMap, v);
        for (out_verts in boost::adj(vertex_data))
            do a thing using vertex_data
        put(dataMap, v, vertex_data)
```
Simplified Grid Random Walk

Complexity:

\[O\left(|V| \times \frac{1}{\text{convergenceRate}} \right) \]

convergenceRate is based on the graph structure distribution of \(p, \lambda, \) and \(\mu, \) and has yet to be thoroughly analyzed, but appears that

\[O(\text{convergenceRate}^{-1}) < O(n^2) \]

Runtime Analysis:

System already distributing simple operations.
Simplified Grid Random Walk
Future Steps
Random Walking + Dynamic Weights: Parallel Implementation

Refactor for parallelism using Parallel Boost

Change graph type from grid for greater flexibility

Work on graph partitioning strategy for different distributions

Analyze hyper-parameter sensitivity (ρ, λ, μ)
Questions?
Random Walk Application: Epidemic Transmission

Let \(I_i \) be the set of infective vertices at time \(t_i \).
Let \(\text{New}_i = I_i - I_{i-1} \)

Define: \(\text{IR}_i(u) = \frac{\text{ipop}_i(u)}{\text{pop}_i(u)} \)

\(\text{Transfer}_i(u, v) = \text{contact between } u \text{ and } v \) between time \(t_{i-1} \) and \(t_i \).

Let \(T_i(u, v) = \text{transition count from } u \text{ to } v \text{ at time } t_i \).
\(T_i(u, v) = \text{Transfer}_i(u, v) \times \text{IR}_{i-1}(u) \)

This can be defined in many ways.
Random Walk Application: Epidemic Transmission

Factors not being considered:
1. Random Spread
2. Disease Carriers
3. Non-Random Distribution of Carriers
4. Population Shift
5. Inanimate Disease Vectors
Random Walk Application: Epidemic Transmission

$I_0 = \{\}$

$I_R(0) = \frac{ipop_i(v)}{pop_i(v)} = \frac{0}{pop(v)}$

At time t_0 there are no infective vertices. But they are all susceptible.
Random Walk Application: Epidemic Transmission

$I_1 = \{D\}$

$\text{New}_\text{In}_{1} = I_1 - I_0 = \{D\}$

$IR_1(D) = 1/100 = .01$

$T_2(D, A) = \text{Transfer}_2(D, A) \times IR_1(D) = 1$

$T_2(D, B) = \text{Transfer}_2(D, B) \times IR_1(D) = .2$

$T_i(u, v) = \text{Transfer}_i(u, v) \times IR_{i-1}(u)$
Random Walk Application: Epidemic Transmission

$I_2 = \{D, A\}$
$New_I_2 = I_2 - I_1 = \{A\}$

What is the probability that vertex A was infected via vertex D?

$Transfer_2(B, A) = 20 \text{ people}$
$Transfer_2(C, A) = 50 \text{ people}$
$Transfer_2(D, A) = 100 \text{ people}$

$T_2(B, A) = Transfer_2(B, A) \times IR_1(B) = 0$
$T_2(C, A) = Transfer_2(C, A) \times IR_1(C) = 0$
$T_2(D, A) = Transfer_2(D, A) \times IR_1(D) = 1$

$likelihood(A < - D | A \in New_I_2) \propto \frac{T_2(D, A)}{\sum_{v \in Adj(A)} T_2(v, A)}$
Random Walk Application: Epidemic Transmission

\[I_3 = \{D, A, B\} \]
\[\text{New}_I_3 = I_3 - I_2 = \{B\} \]

Through which vertex is B more likely to be infected?

\[\text{Transfer}_3(A, B) = 100 \text{ people} \]
\[\text{Transfer}_3(D, B) = 100 \text{ people} \]

\[T_3(A, B) = \text{Transfer}_3(A, B) \times IR_2(A) = 0 \]
\[T_3(D, B) = \text{Transfer}_3(D, B) \times IR_2(D) = 0 \]

\[\text{likelihood}(A < -D \mid A \in \text{New}_I_2) \propto \frac{T_2(A, D)}{\sum_{v \in \text{Adj}(A)} T_2(v, A)} \]