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The Age of Neural
● Neural networks have proven to be 

powerful machine learning models 

in recent years

● Sweeping over multiple fields in CS, 

including NLP and Computer 

Vision

● They are notorious for being 

uninterpretable black boxes

● This project is focused on analyzing 

the flow of gradient through the 

network during training
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Application
Neural network analysis

● Networks are organized into 

logical components

○ Recurrent gates, highway 

connections, differentiable 

data structures, etc.

● Let’s try to identify 

components that most facilitate 

learning

Kernel
“Gradient tracing”

● Finds the path in the 

computation graph through 

which the most gradient 

propagates

● Then finds components that the 

path intersects with

● Algorithmically very similar to 

“backpropagation”
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Buckle Up
This requires a lot of background.
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Neural Network Basics

Input

Target output

Parameters

Predicted output

Loss functionh = W
h
x + b

h
y = W

y
h + b

y
L(y, y ̂)

“Feed forward network 

with one hidden layer”
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Computation Graphs
● Any neural network can be 

expressed as a graph of 

mathematical operators

● Like an abstract syntax tree

● Vertices represent operators, 

constants, or parameters

● Edges are directed and represent 

assignments to function 

parameters

● Always a DAG

6



Neural Network Components
● Additional configurations of 

connections and mathematical 

operators

● Impose an inductive bias on the 

model

○ e.g. attention, additive gates, etc.

Architectural diagram of LSTM

Image credit: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Why Add Components?
1. Increase the network’s modeling power

○ Stack RNNs, Queue RNNs, Neural Turing Machines

2. Make the model easier to train

○ Additive gates in LSTMs and GRUs

3. Make the model inherently more interpretable

○ In machine translation, attention aligns words in the source and target sentences
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Training Neural Networks
● The behavior of the network 

changes depending on the values of 

its parameters

○ Parameters are real numbers often 

grouped into semantically meaningful 

tensors

○ Usually connection weights, but can be 

other things

● The parameters of the network are 

optimized using gradient descent

○ Involves computing the gradient of the 

loss function with respect to the 

parameters

Gradient descent update rule

η : learning rate

L : loss function

f : neural network

θ : vector of all parameters

Image credit: 

http://ruder.io/optimizing-gradient-descent/
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Computing Gradients
● Usually called “backpropagation” in the 

context of neural networks

○ “Gradient” propagates “backward” through the 

network

● Old way: compute by hand

● Modern way: automatic differentiation

○ Exploits the chain rule of calculus to compute 

gradients of complex functions with a fixed set 

of simpler functions

○ “Dynamic graph” libraries like PyTorch and 

DyNet implement this

○ Topological sort + forward pass + backward 

pass

“I can be differentiated!” :)
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Chain Rule
● Allows us to compute the derivative of 

composite functions using derivatives of 

simpler functions

● Intuition

○ How sensitive is f(g(x)) to changes in x at point 

x?

○ Take sensitivity of g(x) to x at point x

○ Take sensitivity of f(y) to y at point y = g(x)

○ Multiply the two together

● If the same “variable” is referenced 

multiple times, add the gradients together

● Can be applied recursively
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Backpropagation as a Graph

Parameter

Mathematical 

operators

1) Edge weights are gradients 

with respect to inputs

2) In accordance with chain 

rule, multiply received 

gradient with local gradient 

wrt input

3) Accumulate gradients from 

multiple nodes by adding 

them together (requires 

topological sort)

Three simple rules:

● Multiply along paths

● Sum incoming edges

● Stop at parameters
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Gradient Tracing Kernel Definition

Parameter

Mathematical 

operators

1) Edge weights are gradients 

with respect to inputs

2) In accordance with chain 

rule, multiply received 

gradient with local gradient 

wrt input

3) Accumulate gradients from 

multiple nodes by adding 

them together (requires 

topological sort)

Some paths are better than others!

Remember the one that propagated 

the most gradient (absolute value).

Compute for all parameters at once, 

just like computing gradient in 

backprop.

Same procedure as backprop,

different semiring (max

instead of sum)
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Backprop vs. Gradient Tracing

Backpropagation (computing total incoming gradient)

Gradient tracing (computing total incoming gradient)

u

v
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Pseudocode

Complexity: O(|V| + |E|)

Reason: every vertex and edge is visited at most once
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Implementation
● Language: Python

● Library PyTorch

● Extracting the computation graph from PyTorch is unnecessarily painful

● Scaling results given are instead for the closely related backpropagation algorithm

○ Reason: Primitive PyTorch operations are tensor operations

○ Gradient tracing will require digging into PyTorch primitives, whereas backprop does not

○ Backprop serves as a prototype for the gradient tracing algorithm
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Actual Code

Notionally change this to a max
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Data
● Synthetically generated feed-forward neural networks

● Number of layers varies while number of units per layer is constant

○ Input, output, and hidden layers all set to size 20

● Training data is randomly generated

○ Values do not affect speed of computation
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Scaling Results

● Includes time to traverse computation graph in reverse, topologically sort nodes, and 

compute gradients (build_autodiff_graph())

● Slightly superlinear? :(

19



Future Plans
● Finish implementing gradient tracing proper

● Run on more realistic neural network architectures
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