
Analyzing Neural Networks with
Gradient Tracing

Brian DuSell

1

The Age of Neural
● Neural networks have proven to be

powerful machine learning models

in recent years

● Sweeping over multiple fields in CS,

including NLP and Computer

Vision

● They are notorious for being

uninterpretable black boxes

● This project is focused on analyzing

the flow of gradient through the

network during training

2

Application
Neural network analysis

● Networks are organized into

logical components

○ Recurrent gates, highway

connections, differentiable

data structures, etc.

● Let’s try to identify

components that most facilitate

learning

Kernel
“Gradient tracing”

● Finds the path in the

computation graph through

which the most gradient

propagates

● Then finds components that the

path intersects with

● Algorithmically very similar to

“backpropagation”

3

Buckle Up
This requires a lot of background.

4

Neural Network Basics

Input

Target output

Parameters

Predicted output

Loss functionh = W
h
x + b

h
y = W

y
h + b

y
L(y, y ̂)

“Feed forward network

with one hidden layer”

5

Computation Graphs
● Any neural network can be

expressed as a graph of

mathematical operators

● Like an abstract syntax tree

● Vertices represent operators,

constants, or parameters

● Edges are directed and represent

assignments to function

parameters

● Always a DAG

6

Neural Network Components
● Additional configurations of

connections and mathematical

operators

● Impose an inductive bias on the

model

○ e.g. attention, additive gates, etc.

Architectural diagram of LSTM

Image credit: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

7

Why Add Components?
1. Increase the network’s modeling power

○ Stack RNNs, Queue RNNs, Neural Turing Machines

2. Make the model easier to train

○ Additive gates in LSTMs and GRUs

3. Make the model inherently more interpretable

○ In machine translation, attention aligns words in the source and target sentences

8

Training Neural Networks
● The behavior of the network

changes depending on the values of

its parameters

○ Parameters are real numbers often

grouped into semantically meaningful

tensors

○ Usually connection weights, but can be

other things

● The parameters of the network are

optimized using gradient descent

○ Involves computing the gradient of the

loss function with respect to the

parameters

Gradient descent update rule

η : learning rate

L : loss function

f : neural network

θ : vector of all parameters

Image credit:

http://ruder.io/optimizing-gradient-descent/

9

http://ruder.io/optimizing-gradient-descent/

Computing Gradients
● Usually called “backpropagation” in the

context of neural networks

○ “Gradient” propagates “backward” through the

network

● Old way: compute by hand

● Modern way: automatic differentiation

○ Exploits the chain rule of calculus to compute

gradients of complex functions with a fixed set

of simpler functions

○ “Dynamic graph” libraries like PyTorch and

DyNet implement this

○ Topological sort + forward pass + backward

pass

“I can be differentiated!” :)

10

Chain Rule
● Allows us to compute the derivative of

composite functions using derivatives of

simpler functions

● Intuition

○ How sensitive is f(g(x)) to changes in x at point

x?

○ Take sensitivity of g(x) to x at point x

○ Take sensitivity of f(y) to y at point y = g(x)

○ Multiply the two together

● If the same “variable” is referenced

multiple times, add the gradients together

● Can be applied recursively

11

Backpropagation as a Graph

Parameter

Mathematical

operators

1) Edge weights are gradients

with respect to inputs

2) In accordance with chain

rule, multiply received

gradient with local gradient

wrt input

3) Accumulate gradients from

multiple nodes by adding

them together (requires

topological sort)

Three simple rules:

● Multiply along paths

● Sum incoming edges

● Stop at parameters

12

Gradient Tracing Kernel Definition

Parameter

Mathematical

operators

1) Edge weights are gradients

with respect to inputs

2) In accordance with chain

rule, multiply received

gradient with local gradient

wrt input

3) Accumulate gradients from

multiple nodes by adding

them together (requires

topological sort)

Some paths are better than others!

Remember the one that propagated

the most gradient (absolute value).

Compute for all parameters at once,

just like computing gradient in

backprop.

Same procedure as backprop,

different semiring (max

instead of sum)

13

Backprop vs. Gradient Tracing

Backpropagation (computing total incoming gradient)

Gradient tracing (computing total incoming gradient)

u

v

14

Pseudocode

Complexity: O(|V| + |E|)

Reason: every vertex and edge is visited at most once

15

Implementation
● Language: Python

● Library PyTorch

● Extracting the computation graph from PyTorch is unnecessarily painful

● Scaling results given are instead for the closely related backpropagation algorithm

○ Reason: Primitive PyTorch operations are tensor operations

○ Gradient tracing will require digging into PyTorch primitives, whereas backprop does not

○ Backprop serves as a prototype for the gradient tracing algorithm

16

Actual Code

Notionally change this to a max

17

Data
● Synthetically generated feed-forward neural networks

● Number of layers varies while number of units per layer is constant

○ Input, output, and hidden layers all set to size 20

● Training data is randomly generated

○ Values do not affect speed of computation

18

Scaling Results

● Includes time to traverse computation graph in reverse, topologically sort nodes, and

compute gradients (build_autodiff_graph())

● Slightly superlinear? :(

19

Future Plans
● Finish implementing gradient tracing proper

● Run on more realistic neural network architectures

20

