Analyzing Neural Networks with
Gradient Tracing

Brian DuSell



The Age of Neural

Neural networks have proven to be
powerful machine learning models
In recent years

Sweeping over multiple fields in CS,
including NLP and Computer
Vision

This project is focused on analyzing
the flow of gradient through the
network during training
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Application Kernel

Neural network analysis “Gradient tracing”
e Networks are organized into e Finds the path in the
logical components computation graph through
o Recurrent gates, highway which the most gradient

connections, differentiable propagates

data structures. etc e Then finds components that the
e Let’s try to identify

components that most facilitate

path intersects with
e Algorithmically very similar to

learning backpropagation



Buckle Up

This requires a lot of background.



Neural Network Basics

“Feed forward network

with one hidden layer”
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Computation Graphs

Any neural network can be
expressed as a graph of
mathematical operators

Like an abstract syntax tree
Vertices represent operators,
constants, or parameters

Edges are directed and represent
assignments to function

parameters
Always a DAG




Neural Network Components

e Additional configurations of
connections and mathematical
operators

e Impose an inductive bias on the
model

o eg. attention, additive gates, etc.

Architectural diagram of LSTM

Image credit: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Why Add Components?

1. Increase the network’s modeling power
o  Stack RNNs, Queue RNNs, Neural Turing Machines

2. Make the model easier to train
o Additive gates in LSTMs and GRUs

3. Make the model inherently more interpretable

o In machine translation, attention aligns words in the source and target sentences



Training Neural Networks

The behavior of the network
changes depending on the values of

1ts parameters
o  Parameters are real numbers often
grouped into semantically meaningful
tensors
o Usually connection weights, but can be
other things

The parameters of the network are
optimized using gradient descent

o Involves computing the gradient of the
loss function with respect to the
parameters

0 =60 —nVeL(f(x;0),¥)

Gradient descent update rule
5 : learning rate
L : loss function
f: neural network
0 : vector of all parameters

- SGD
=~ Momentum

Image credit:

http://ruder.io/optimizing-gradient-descent



http://ruder.io/optimizing-gradient-descent/

Computing Gradients

e Usually called “backpropagation” in the

context of neural networks

o  “Gradient” propagates “backward” through the
network

e Old way: compute by hand
e Modern way: automatic differentiation

O  Exploits the chain rule of calculus to compute
gradients of complex functions with a fixed set
of simpler functions

o “Dynamic graph” libraries like PyTorch and
DyNet implement this

o  Topological sort + forward pass + backward
ERS
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“I can be differentiated!” :)
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Chain Rule

Allows us to compute the derivative of
composite functions using derivatives of
simpler functions

Intuition

o  How sensitive is f(g(x)) to changes in x at point
X?

o  Take sensitivity of g(x) to x at point x

o  Take sensitivity of f(y) to y at point y = g(x)

o Multiply the two together

If the same “variable” is referenced
multiple times, add the gradients together
Can be applied recursively
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Backpropagation as a Graph

Three simple rules:
e  Multiply along paths
e Sum incoming edges
e  Stop at parameters

2) In accordance with chain

rule, multiply received
gradient with local gradi
wrt input

1) Edge weights are gradients
with respect to inputs

Parameter

3) Accumulate gradi

multiple nodes by addi

them together (requires
topological sort)

Mathematical
operators
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Gradient Tracing Kernel Definition

Some paths are better than others!

Remember the one that propagated
the most gradient (absolute value).

Compute for all parameters at once,
just like computing gradient in
backprop.

Same procedure as backprop,
different semiring (max
instead of sum)

2) In accordance with chain

rule, multiply received
gradient with local gradi
wrt input

1) Edge weights are gradients
with respect to inputs

o

Parameter

3) Accumulate gradi

multiple nodes by addi

them together (requires
topological sort)

Mathematical
operators
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Backprop vs. Gradient Tracing

i = VuylL:= Z w(u, v)gy

(u,v)eEFE

Backpropagation (computing total incoming gradient)

t, = argmax |w(u,v)g,|

ul(u,w)EE

Gradient tracing (computing total incoming gradient)
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Pseudocode

Algorithm 1 Gradient tracing
1: procedure GRADIENTTRACING(G, #;) > G is a computation graph with root vertex ¢, 6; is a
parameter
p < an empty path
V< H.i
while v # ¢ do

v < argmax |w(u, v)gy|
ul|(u,v)EE

append v to p

return p

Complexity: O(|V] + |E|)
Reason: every vertex and edge is visited at most once
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Implementation

Language: Python
Library PyTorch
Extracting the computation graph from PyTorch is unnecessarily painful

Scaling results given are instead for the closely related backpropagation algorithm
o  Reason: Primitive PyTorch operations are tensor operations
o  Gradient tracing will require digging into PyTorch primitives, whereas backprop does not
o  Backprop serves as a prototype for the gradient tracing algorithm
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def compute_gradients(vertices):
sorted vertices = list(topologically sort vertices(vertices.values()))
for v in sorted vertices:
# forward edgelist must not contain duplicates for this to work properly.
if v.forward_edgelist:
# Compute the gradient of the loss with respect to v by summing the
# gradients with respect to v stored at each outgoing vertex u.
v.gradient = sum tensors([
term
for u in v.forward edgelist
for term in u.input gradients by vertex[v]

1)
else:
# The root vertex's gradient is 1 in the base case.
v.gradient = torch.tensor([1.0], requires grad=False)
input grads = v.grad fn(v.gradient)
if not isinstance(input grads, tuple):

input_grads = (input_grads,)
input_grads by vertex = collections.defaultdict(list)
input_grads by pos = {}
input funcs = v.grad fn.next functions
for pos, ((input func, ), input grad) in enumerate(zip(input funcs, input grads)):
# input grad is None when input func does not require grad.
if input grad is not None:
def build_autodiff_graph(loss): # Make sure that input grad does not require grad, to save memory.
backward edges = get backward edges(loss) input grad = input grad.detach()
vertices = get vertex dict(backward edges) # Note that the same vertex can be used as an input multiple
sorted vertices = compute gradients(vertices) # times.
return sorted vertices term = input grad * v.gradient
input grads by vertex[vertices[input func]].append(term)
input grads by pos[pos] = term
v.input_gradients by vertex = input_grads_by vertex
v.input gradients by position = input grads by pos
return sorted_vertices




Data

e Synthetically generated feed-forward neural networks

e Number of layers varies while number of units per layer is constant
o  Input, output, and hidden layers all set to size 20

e Training data is randomly generated

o  Values do not affect speed of computation
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Scaling Results

Time (s) vs. Number of Layers

200
Number of Layers

e Includes time to traverse computation graph in reverse, topologically sort nodes, and
compute gradients (build_autodiff_graph())
e  Slightly superlinear? :(
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Future Plans

e Finish implementing gradient tracing proper
e Run on more realistic neural network architectures
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