
Jaccard Coefficients

Neil Butcher

Jaccard

• Jaccard emulates real world problems

• Sparse access patterns

• Can be used for community detection

1

What is a Jaccard Coefficient?

• Similarity between neighborhoods of two
nodes (V, U):

– Γ(u,v) = |𝑁 𝑉 ∪ 𝑁(𝑈)|

– ɤ(u, v) = |𝑁 𝑉 ∩ 𝑁(𝑈)|

– 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑉, 𝑈 =
ɤ(u,v)
Γ(u, v)

– ɤ(A, C) = 1

– Γ(A,C) = 3

– Jaccard(A, C) = 1/3 2

A B

C D

How to compute Jaccard

• Comes down to being able to compute
intersection of neighborhoods (ɤ(u, v))

– ɤ(u, v) = |𝑁 𝑉 ∩ 𝑁(𝑈)|

– Γ(u,v) = |N(V)| + |N(U)| - ɤ(u, v)

3

Intersection Algorithm

– Intersect(U, V)

– For each vertex Y in Neighborhood(V):
• If Y is in N(U)

– IntersectCounter++

• Given neighborhoods that are sorted
complexity is: O(M) – M is max of |N(U)| or
|N(V)|

• Could sort first: O(Mlog(M))

• Otherwise O(M^2)
4

Jaccard – Compute all pairs

• Simple Soln: Compute Jaccards for all pairs
O(N2*M)

• 0 value Jaccards could be ignored if detected

5

Pseudocode

• For each vertex V

– For each vertex U in N(V)

• For each W in N(U)
– If intersection(V, W) hasn’t been computed, compute it

• Any pairs without a value have no shared
neighborhood

6

Pseudocode Complexity

• For each vertex V O(N)

– For each vertex U in N(V) O(M)

• For each W in N(U) O(M)
– If intersection(V, W) hasn’t been computed, compute it O(M)

• M is avg neighborhood size

• Overall complexity O(N*M3)

7

Input Graphs

• Use RMAT graphs

– Generated using PaRMAT
• https://github.com/farkhor/PaRMAT

• Advantages:

– Simple, easy to produce

– Control input size/scaling

– Evaluate Jaccard as HPC benchmark

• Disadvantages

– Misses characteristics of real datasets
8

https://github.com/farkhor/PaRMAT

Results:

9

0

100

200

300

400

500

600

700

25k edges 50k edges 100k edges 150k edges 200k edges

Ti
m

e(
s)

Number of edges (in thousands)

50k vertices 75k vertices 100k vertices

Future Work

• Adapt existing Triangle Counting algorithms to
compute Jaccard (using GraphBLAS)

• Use Real World Graphs

• Adapt high levels of parallelism/cache
oblivious techniques to utilize MLM

• Map Reduce Techniques?

10

