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Jaccard

• Jaccard emulates real world problems

• Sparse access patterns

• Can be used for community detection

1



What is a Jaccard Coefficient?

• Similarity between neighborhoods of two 
nodes (V, U):

– Γ(u,v) = |𝑁 𝑉 ∪ 𝑁(𝑈)|

– ɤ(u, v) = |𝑁 𝑉 ∩ 𝑁(𝑈)|

– 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑉, 𝑈 =
ɤ(u,v)
Γ(u, v)

– ɤ(A, C) = 1

– Γ(A,C) = 3

– Jaccard(A, C) = 1/3 2
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How to compute Jaccard

• Comes down to being able to compute 
intersection of neighborhoods (ɤ(u, v))

– ɤ(u, v) = |𝑁 𝑉 ∩ 𝑁(𝑈)|

– Γ(u,v) = |N(V)| + |N(U)| - ɤ(u, v)
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Intersection Algorithm

– Intersect(U, V)

– For each vertex Y in Neighborhood(V):
• If Y is in N(U)

– IntersectCounter++

• Given neighborhoods that are sorted 
complexity is: O(M) – M is max of |N(U)| or 
|N(V)|

• Could sort first: O(Mlog(M))

• Otherwise O(M^2)
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Jaccard – Compute all pairs

• Simple Soln: Compute Jaccards for all pairs 
O(N2*M) 

• 0 value Jaccards could be ignored if detected
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Pseudocode

• For each vertex V 

– For each vertex U in N(V) 

• For each W in N(U) 
– If intersection(V, W) hasn’t been computed, compute it

• Any pairs without a value have no shared 
neighborhood
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Pseudocode Complexity

• For each vertex V  O(N)

– For each vertex U in N(V) O(M)

• For each W in N(U) O(M)
– If intersection(V, W) hasn’t been computed, compute it O(M)

• M is avg neighborhood size

• Overall complexity O(N*M3)
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Input Graphs

• Use RMAT graphs

– Generated using PaRMAT
• https://github.com/farkhor/PaRMAT

• Advantages:

– Simple, easy to produce

– Control input size/scaling

– Evaluate Jaccard as HPC benchmark

• Disadvantages

– Misses characteristics of real datasets
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Results:
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Future Work

• Adapt existing Triangle Counting algorithms to 
compute Jaccard (using GraphBLAS)

• Use Real World Graphs

• Adapt high levels of parallelism/cache 
oblivious techniques to utilize MLM

• Map Reduce Techniques?
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