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A (well-meaning) user tried to run a bioinformatics pipeline to 
analyze a batch of genomic data.

Motivation
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Shared filesystem performance became degraded, with other users 
unable to access the filesystem.

Motivation
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That user got a strongly worded email and had to stop their 
analyses.
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Certain program behaviors produce large bursts of metadata I/O 
activity (e.g. library search).

These behaviors can occur at the same time across multiple 
workers (e.g. startup, new analysis phase).

Techniques such as worker-side caching and pre-staging can help, 
but how do we know which parts of the FS would benefit?

Metadata Storm
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Analysis pipelines have many components, show data-dependent 
and non-deterministic behavior.

Each run makes a large number of filesystem accesses (millions).

We need to use strace-type events of numerous analyses to 
profile filesystem interactions.

Profiling Scientific Applications
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    29204 open("/etc/passwd", O_RDONLY|O_CLOEXEC) = 3

Profiling Scientific Applications
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In this graph, nodes are filesystem entries (inodes).

Edge weights indicate the number of times the access pattern

inode A -> inode B

occurred over all runs.

Amenable to streaming updates

Constructing a Graph from Execution Profiles
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Groups of filesystem entries frequently accessed together are 
visible as communities in the execution graph.

Hierarchical community detection allows us to identify good 
shards/partitions for manual distribution.

Streaming algorithm exists for this

Community Detection
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Progressively removes edges from graph

The remaining components are the communities.

Uses edge betweenness: the number of shortest paths between 
pairs of nodes that run along an edge

Sequential algorithm: Girvan–Newman
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Pseudocode of algorithm (courtesy of Wikipedia)

1. For each edge E in G, compute the betweenness of E.
2. Remove the edge with highest betweenness from G.
3. Recalculate betweenness for edges affected by the removal.
4. Repeat Steps 2 and 3 until no edges remain.

Results in a dendrogram showing successively finer clusters

Sequential algorithm: Girvan–Newman
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Computing edge centrality is expensive, must be (partially) 
computed after each edge removal.

Sequential algorithm (Girvan–Newman) runs in O(VE2) or O(V3) in a 
sparse graph.

STINGER supports streaming updates and parallel agglomerative 
clustering.

Complexity
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Data Sets
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Events Nodes Edges

true 47 46 45

bash 5,499 840 1,569

MAKER 1,813,544 24897 129,153



(Poorly done) Visualization of MAKER Graph
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(Poorly done) Visualization of MAKER Graph
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NetworkX includes an implementation of Girvan–Newman!

Straightforward Python implementation parses the strace logs, 
constructs the graph, and invokes Girvan–Newman.

Dendrogram (arbitrarily) limited to k=5 levels deep.

Initial Implementation
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Performance Results
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Girvan–Newman 1st Betweenness 
Centrality

true 0.43 s 0.41 s

bash 290 s 10. s

MAKER 😭 ?? ( > 45 min)

Results are (roughly) consistent with O(VE2) running time.



STINGER allows for streaming and parallel operations.

C rather than Python.

Heuristics to reduce the size of the graph might help.

Enhanced Implementation
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http://www.yandell-lab.org/software/maker.html

https://en.wikipedia.org/wiki/Girvan%E2%80%93Newman_algorith
m

http://www.stingergraph.com/
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