
Streaming Community
Detection for Partitioning
Parallel Filesystems

Tim Shaffer

A (well-meaning) user tried to run a bioinformatics pipeline to
analyze a batch of genomic data.

Motivation

2

MAKER

Shared filesystem performance became degraded, with other users
unable to access the filesystem.

Motivation

3

MAKER

That user got a strongly worded email and had to stop their
analyses.

Motivation

4

MAKER

Certain program behaviors produce large bursts of metadata I/O
activity (e.g. library search).

These behaviors can occur at the same time across multiple
workers (e.g. startup, new analysis phase).

Techniques such as worker-side caching and pre-staging can help,
but how do we know which parts of the FS would benefit?

Metadata Storm

5

Analysis pipelines have many components, show data-dependent
and non-deterministic behavior.

Each run makes a large number of filesystem accesses (millions).

We need to use strace-type events of numerous analyses to
profile filesystem interactions.

Profiling Scientific Applications

6

 29204 open("/etc/passwd", O_RDONLY|O_CLOEXEC) = 3

Profiling Scientific Applications

7

In this graph, nodes are filesystem entries (inodes).

Edge weights indicate the number of times the access pattern

inode A -> inode B

occurred over all runs.

Amenable to streaming updates

Constructing a Graph from Execution Profiles

8

Groups of filesystem entries frequently accessed together are
visible as communities in the execution graph.

Hierarchical community detection allows us to identify good
shards/partitions for manual distribution.

Streaming algorithm exists for this

Community Detection

9

Progressively removes edges from graph

The remaining components are the communities.

Uses edge betweenness: the number of shortest paths between
pairs of nodes that run along an edge

Sequential algorithm: Girvan–Newman

10

Pseudocode of algorithm (courtesy of Wikipedia)

1. For each edge E in G, compute the betweenness of E.
2. Remove the edge with highest betweenness from G.
3. Recalculate betweenness for edges affected by the removal.
4. Repeat Steps 2 and 3 until no edges remain.

Results in a dendrogram showing successively finer clusters

Sequential algorithm: Girvan–Newman

11

Computing edge centrality is expensive, must be (partially)
computed after each edge removal.

Sequential algorithm (Girvan–Newman) runs in O(VE2) or O(V3) in a
sparse graph.

STINGER supports streaming updates and parallel agglomerative
clustering.

Complexity

12

Data Sets

13

Events Nodes Edges

true 47 46 45

bash 5,499 840 1,569

MAKER 1,813,544 24897 129,153

(Poorly done) Visualization of MAKER Graph

14(Poorly done) Visualization of MAKER Graph

(Poorly done) Visualization of MAKER Graph

15(Poorly done) Visualization of MAKER Graph

NetworkX includes an implementation of Girvan–Newman!

Straightforward Python implementation parses the strace logs,
constructs the graph, and invokes Girvan–Newman.

Dendrogram (arbitrarily) limited to k=5 levels deep.

Initial Implementation

16

Performance Results

17

Girvan–Newman 1st Betweenness
Centrality

true 0.43 s 0.41 s

bash 290 s 10. s

MAKER 😭 ?? (> 45 min)

Results are (roughly) consistent with O(VE2) running time.

STINGER allows for streaming and parallel operations.

C rather than Python.

Heuristics to reduce the size of the graph might help.

Enhanced Implementation

18

http://www.yandell-lab.org/software/maker.html

https://en.wikipedia.org/wiki/Girvan%E2%80%93Newman_algorith
m

http://www.stingergraph.com/

M. Girvan and M. E. J. Newman, Community structure in social and
biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826
(2002).

M. E. J. Newman and M. Girvan, Finding and evaluating community
structure in networks. Preprint cond-mat/0308217 (2003).

References

19

http://www.yandell-lab.org/software/maker.html
https://en.wikipedia.org/wiki/Girvan%E2%80%93Newman_algorithm
https://en.wikipedia.org/wiki/Girvan%E2%80%93Newman_algorithm
http://www.stingergraph.com/

