
Graph Similarity Scoring
Applied to

Abstract Meaning
Representation

Justin DeBenedetto

Abstract Meaning Representation
(AMR)
● AMRs are a semantic formalism

which models sentences

1

Abstract Meaning Representation
(AMR)
● AMRs are a semantic formalism

which models sentences
○ Nodes represent concepts
○ Edges represent relations

between concepts
■ Semantic roles
■ ARG0 = Agent
■ ARG1 = Patient
■ Example AMR for sentence:

“John wants Mary to
believe him.”

2

Properties of AMRS as Graphs
● Some properties of AMRs

○ Directed Acyclic Graphs (DAGs)
○ Single rooted (focus of sentence)
○ Each AMR represents a sentence

3

Dataset

• Set of 10,312 AMRs from various news
sources

• Average number of nodes is: 17.1
• Average number of edges is: 17.1
• More than half are trees

4

Kernel: Graph Similarity Scoring

• Use some AMRs for training
– Given multiple candidate AMRs, choose best one
– Need a way to score each choice
– Want pairwise digraph similarity score

• Typical metric used for AMRs is SMATCH

5

SMATCH Score

• Semantic Match score
– Find best matching of nodes
– Score based on node and edge labels
– F1 score

• Node label
• For each edge: edge type and end points

6

Basic Implementation Pseudocode

7

Basic Implementation Pseudocode

8

Find all ways to
match nodes in A
with nodes in B

Basic Implementation Pseudocode

9

Check if node
labels match and
if edge labels
match

Complexity

• Most direct way (previous slide) has
complexity ~O(N!/(N-M)!*|M+E|)
– N = number of nodes in larger graph
– M = number of nodes in smaller graph
– E = number of edges in smaller graph

• In practice, heuristics are used
– Faster, but no optimality guarantee
– I want to avoid heuristics

10

Improvements

• Combine mapping and scoring
– Score nodes as they are matched
– Avoids recomputing

• Score likely alignment first, use as cutoff
– Number incorrect is cutoff threshold
– Can avoid unnecessary computation

• Send subgraphs to worker processes for
parallelism

11

New Complexity

• Previously ~O(N!/(N-M)!*|M+E|)
• Now ~O(N!/(N-M)!*|E|) in worst case,

~O(N!/(N-M)!) in average case
• Worst case complexity not improved greatly
• Better in practice using cutoff to eliminate

parts of search space
• Effectiveness increases as SMATCH increases

12

Implementation

• Implemented in Python 2.7
• Uses NetworkX
• Uses Multiprocessing library
• ~500 lines of code (separate functions for

basic vs enhanced vs parallel, so some
repetition)

13

Timing Results

14

Timing Results

15

Generating Candidate AMRs

• In practice we use SMATCH on AMRs that are
similar

• Imitate this by randomly rewiring edges,
relabeling edges, and relabeling nodes

16

Timing Results

17

Timing Results

18

Conclusions

• While the worst case complexity remains bad,
typical use can be made much better

• Prune search space by not pursuing bad
subgraphs

• Parallelize subgraph search
• Most effective when candidate is close to

correct (high SMATCH)

19

