Graph Similarity Scoring
Applied to
Abstract Meaning Representation

Justin DeBenedetto
Abstract Meaning Representation (AMR)

- AMRs are a semantic formalism which models sentences.
Abstract Meaning Representation (AMR)

- AMRs are a semantic formalism which models sentences
 - Nodes represent concepts
 - Edges represent relations between concepts
 - Semantic roles
 - ARG0 = Agent
 - ARG1 = Patient
 - Example AMR for sentence: “John wants Mary to believe him.”
Properties of AMRS as Graphs

- Some properties of AMRs
 - Directed Acyclic Graphs (DAGs)
 - Single rooted (focus of sentence)
 - Each AMR represents a sentence
Dataset

• Set of 10,312 AMRs from various news sources
• Average number of nodes is: 17.1
• Average number of edges is: 17.1
• More than half are trees
Kernel: Graph Similarity Scoring

• Use some AMRs for training
 – Given multiple candidate AMRs, choose best one
 – Need a way to score each choice
 – Want pairwise digraph similarity score
• Typical metric used for AMRs is SMATCH
SMATCH Score

• Semantic Match score
 – Find best matching of nodes
 – Score based on node and edge labels
 – F1 score
 • Node label
 • For each edge: edge type and end points
Algorithm 1 Basic SMATCH pseudocode

1: procedure GETSMATCH(A,B)
2: maxF1 ← 0
3: for mapping in nodeMapping(a,b) do
4: correct ← 0
5: for alignedPair in mapping do
6: if labels match then
7: correct ← correct + 1
8: for edges in a do
9: replace end-points with aligned nodes from b
10: if new edge exists in b then
11: correct ← correct + 1
12: precisionDenominator ← number of triples in b
13: recallDenominator ← number of triples in a
14: precision ← correct/precisionDenominator
15: recall ← correct/recallDenominator
16: f1 ← (recall + precision)/2
17: if f1 > maxF1 then
18: maxF1 ← f1
19: return maxF1
20: procedure NODEMAPPING(A,B)
21: allAlignments ← empty
22: Select node_a in a
23: for node_b in b do
24: newAlignments ← align node_a to node_b
25: newA ← a - node_a
26: newB ← b - node_b
27: newAlignments ← nodeMapping(newA, newB)
28: append newAlignments to allAlignments
29: return allAlignments
Basic Implementation Pseudocode

Algorithm 1 Basic SMATCH pseudocode

1. procedure GETSMATCH(A,B)
2. \[\text{maxF1} \leftarrow 0 \]
3. for mapping in nodeMapping(a,b) do
 4. \[\text{correct} \leftarrow 0 \]
 5. for alignedPair in mapping do
 6. if labels match then
 7. \[\text{correct} \leftarrow \text{correct} + 1 \]
 8. for edges in a do
 9. replace end-points with aligned nodes from b
 10. if new edge exists in b then
 11. \[\text{correct} \leftarrow \text{correct} + 1 \]
 12. \[\text{precisionDenominator} \leftarrow \text{number of triples in b} \]
 13. \[\text{recallDenominator} \leftarrow \text{number of triples in a} \]
 14. \[\text{precision} \leftarrow \text{correct/precisionDenominator} \]
 15. \[\text{recall} \leftarrow \text{correct/recallDenominator} \]
 16. \[f1 \leftarrow (\text{recall} + \text{precision})/2 \]
 17. if \(f1 > \text{maxF1} \) then
 18. \[\text{maxF1} \leftarrow f1 \]
 19. return \text{maxF1}
Check if node labels match and if edge labels match
Complexity

• Most direct way (previous slide) has complexity $\sim O(N!/(N-M)! \cdot |M+E|)$
 – $N =$ number of nodes in larger graph
 – $M =$ number of nodes in smaller graph
 – $E =$ number of edges in smaller graph

• In practice, heuristics are used
 – Faster, but no optimality guarantee
 – I want to avoid heuristics
Improvements

• Combine mapping and scoring
 – Score nodes as they are matched
 – Avoids recomputing

• Score likely alignment first, use as cutoff
 – Number incorrect is cutoff threshold
 – Can avoid unnecessary computation

• Send subgraphs to worker processes for parallelism
New Complexity

• Previously $\sim O(N!/\binom{N-M}{M+E})$
• Now $\sim O(N!/\binom{N-M}{E})$ in worst case, $\sim O(N!/\binom{N-M}{!})$ in average case
• Worst case complexity not improved greatly
• Better in practice using cutoff to eliminate parts of search space
• Effectiveness increases as SMATCH increases
Implementation

• Implemented in Python 2.7
• Uses NetworkX
• Uses Multiprocessing library
• ~500 lines of code (separate functions for basic vs enhanced vs parallel, so some repetition)
Timing Results

![Graph showing SMATCH Time with 4 node AMR](image)
Timing Results
Generating Candidate AMRs

• In practice we use SMATCH on AMRs that are similar
• Imitate this by randomly rewiring edges, relabeling edges, and relabeling nodes
Timing Results

![Graph showing timing results for SMATCH with 10 nodes.]
Timing Results

![Graph showing SMATCH Time for 10 nodes](image)
Conclusions

• While the worst case complexity remains bad, typical use can be made much better
• Prune search space by not pursuing bad subgraphs
• Parallelize subgraph search
• Most effective when candidate is close to correct (high SMATCH)