Graph Similarity Scoring
Applied to

Abstract Meaning
Representation

Justin DeBenedetto

7he College of Engineerings % 4 ..

ar the University of Notre Dame

Abstract Meaning Representation
(AMR)

® AMRs are a semantic formalism
which models sentences

ARG (>v <A R(}7
: \
Ne

The College of Engineering

ar the Untversity of Notre Dame

Abstract Meaning Representation
(AMR)

® AMRs are a semantic formalism
which models sentences

between concepts \
believe | ARGO0
= ARG1 = Patient ARGO

o Nodes represent concepts
o Edges represent relations ARGI

= Semantic roles

=« ARGO = Agent

. Example AMR for sentence: g -

1ar R
“John wants Mary to 4 v

believe him.”

The College of Engineering

ar the Untversity of Notre Dame

Properties of AMRS as Graphs

. Some properties of AMRs
- Directed Acyclic Graphs (DAGSs)
- Single rooted (focus of sentence)
- Each AMR represents a sentence

The College of Engineering

ar the Untversity of Notre Dame

Dataset

e Set of 10,312 AMRs from various news
sources

e Average number of nodesis: 17.1

e Average number of edgesis: 17.1

e More than half are trees

The College of Engineering

ar the Untversity of Notre Dame

Kernel: Graph Similarity Scoring

 Use some AMRs for training
— Given multiple candidate AMRs, choose best one
— Need a way to score each choice
— Want pairwise digraph similarity score

* Typical metric used for AMRs is SMATCH

The College of Engineering

ar the Untversity of Notre Dame

SMATCH Score

e Semantic Match score
— Find best matching of nodes

— Score based on node and edge labels

— F1 score
* Node label
* For each edge: edge type and end points

The College of Engineering

ar the Untversity of Notre Dame

Basic Implementation Pseudocode

Algorithm 1 Basic SMATCH pseudocode

-~

00 X O OX

10:

12
13:
14:
15:
16:
17:
18:
19:

for edges in a do

20: procedure NODEMAPPING(A,B)
21: allAlignments ¢ emply

. » » 1 I/ A .
: procedure GETSMATCH(A,B) 2. Select node, in &
mazF1 + 0 23: for nodeg in b do
for mapping in nodeMapping(a,b) do 24: newAlignments < align node, to node
correct + 0 25: newA ¢ a — nodeqg
for alignedPair in mapping do 26: newl ¢ b — nodey,
if labels match then 27 newAlignments ¢ nodeMapping(newA, newB)
' - 28: ypend newAlignments to allAlignments
correct + correct + 1 P ; g g
29: return allAlignments

replace end-points with aligned nodes from b
if new edge exists in b then
correct < correct + 1

precisionDenominator < number of triples in b
recall Denominator < number of triples in a
precision « correct/precisionDenominator
recall < correct/recall Denominator
f1 « (recall + precision) /2
if f1 > maxzF'1 then

maxF1 + f1

return mazxF'l

7he College of Engineering

ar the Untversity of Notre Dame

Basic Implementation Pseudocode

Algorithm 1 Basic SMATCH pseudocode

-~

00 X O OX

10:

12
13:
14:
15:
16:
17:
18:
19:

: procedure GETSMATCH(A,B)
maxF'1l + 0
for mapping in nodeMapping(a,b) do
correct + 0
for alignedPair in mapping do
if labels match then
correct + correct + 1
for edges in a do
replace end-points with aligned nodes from b
if new edge exists in b then
correct < correct + 1
precisionDenominator < number of triples in b
recall Denominator < number of triples in a
precision « correct/precisionDenominator
recall < correct/recall Denominator
f1 « (recall + precision) /2
if f1 > maxzF'1 then
maxF1 + f1

return mazxF'l

allAlignments ¢ emply
Select node, in a

for nodeg in b do
newAlignments < align node, to nodey,
newA ¢ a — nodeg
newlB - b~ nodey
newAlignments ¢ nodeMapping(newA, newB)
append newAlignments to allAlignments

return allAlignments

Find all ways to
match nodes in A
with nodes in B

7he College of Engineering

ar the Untversity of Notre Dame

Basic Implementation Pseudocode

Algorithm 1 Basic SMATCH pseudocode 20: procedure NODEMAPPING(A,B)
.] 21: allAlignments ¢ emply
1: procedure GETSMATCH(A,B) 2. Select node, in &
2 mazF1 + 0 23: for nodeg in b do
3: for mapping in nodeMapping(a.b) do 24: newAlignments < align node, to node
4 correct + (25: newA ¢ a —~ nodeg

for alignedPair in mapping do 26: newl ¢ b — nodey,
if labels match then 27 newAlignments ¢ nodeMapping(newA, newB)

5

6 . .

s corvert «porrect el 28: append newAlignments to allAlignments
8

9

5 29: return allAlignments
for edges in a do e

replace end-points with aligned nodes from b

102 if new edge exists in b tl '
- iIf new edge exists in b then Check If nOde

correct +— correct + 1

12: precisionDenominator < number of triples in b
labels match and

recall Denominator < number of triples in a

14: precision « correct/precisionDenominator if e d e I a b e I S
15: recall < correct/recall Denominator g

16: f1 « (recall + precision) /2

17: if f1 > maxzF'1 then matCh

18: maxzF'1 + f1 9
19: return maxzF'l '

7he College of Engineering

ar the Untversity of Notre Dame

Complexity

 Most direct way (previous slide) has
complexity ~O(N!/(N-M)!* | M+E|)
— N = number of nodes in larger graph

— M = number of nodes in smaller graph
— E = number of edges in smaller graph

* |n practice, heuristics are used
— Faster, but no optimality guarantee
— | want to avoid heuristics

The College of Engineering

ar the Untversity of Notre Dame

Improvements

e Combine mapping and scoring
— Score nodes as they are matched
— Avoids recomputing

e Score likely alignment first, use as cutoff
— Number incorrect is cutoff threshold
— (Can avoid unnecessary computation

e Send subgraphs to worker processes for
parallelism

The College of Engineering

ar the Untversity of Notre Dame

New Complexity

* Previously YO(N!/(N-M)!* | M+E|)

* Now ~O(N!/(N-M)!*|E]|) in worst case,
~O(N!/(N-M)!) in average case

e Worst case complexity not improved greatly

e Better in practice using cutoff to eliminate
parts of search space

e Effectiveness increases as SMATCH increases

The College of Engineering

ar the Untversity of Notre Dame

Implementation

 Implemented in Python 2.7

e Uses NetworkX

* Uses Multiprocessing library

* ~500 lines of code (separate functions for
basic vs enhanced vs parallel, so some
repetition)

The College of Engineering

ar the Untversity of Notre Dame

Timing Results

SMATCH Time with 4 node AMR

500 .

400

me (s)
<

E 300 N
I ;
200

100

0 10 20 30 40 50 60

Number of Nodes

7he College of Engineering

ar the Untversity of Notre Dame

70

Basic

Enhanced
Parallel

Poly. (Basic)
Poly. (Enhanced)

Poly. (Parallel)

Timing Results

SMATCH Time with a=b

350
300 il

250

® Basic

Time (s)

150 @ Enhanced

Paraliel

10

o ®

0 2 < 6

Number of Nodes

7he College of Engineering

ar the Untversity of Notre Dame

Generating Candidate AMRs

e |n practice we use SMATCH on AMRs that are
similar

* |mitate this by randomly rewiring edges,
relabeling edges, and relabeling nodes

The College of Engineering

ar the Untversity of Notre Dame

Timing Results

SMATCH Time 10 nodes
200
180 | — e —
\"\///T/N"-\‘V" P — S "
160
140
120

100 e B S 1 C

-Enhanced

Paraliel

10 20 30 40 50 60 70 80 S0

Percent chance of node and edges relabeled and edges rewired

7he College of Engineering

ar the Untversity of Notre Dame

Timing Results

SMATCH Time 10 nodes
200

180

160

10 20 30 40 50 60 70 80 S0

Percent chance of node and edges relabeled and edges rewired

7he College of Engineering

ar the Untversity of Notre Dame

100

0.9

0.8

0.7

0.6

05

0.4

0.3

0.2

0.1

SMATCH Score

e B S 1C
- ENhan ced

Parallel

— SMATCH

Conclusions

 While the worst case complexity remains bad,
typical use can be made much better

 Prune search space by not pursuing bad
subgraphs

e Parallelize subgraph search

* Most effective when candidate is close to
correct (high SMATCH)

The College of Engineering

ar the Untversity of Notre Dame

