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Abstract Meaning Representation
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® AMRs are a semantic formalism
which models sentences
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Abstract Meaning Representation
(AMR)

® AMRs are a semantic formalism
which models sentences

between concepts \
believe | ARGO0
= ARG1 = Patient ARGO

o Nodes represent concepts
o Edges represent relations ARGI

= Semantic roles

=« ARGO = Agent

. Example AMR for sentence: g -

1ar R
“John wants Mary to 4 v

believe him.”
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Properties of AMRS as Graphs

. Some properties of AMRs
- Directed Acyclic Graphs (DAGSs)
- Single rooted (focus of sentence)
- Each AMR represents a sentence
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Dataset

e Set of 10,312 AMRs from various news
sources

e Average number of nodesis: 17.1

e Average number of edgesis: 17.1

e More than half are trees
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Kernel: Graph Similarity Scoring

 Use some AMRs for training
— Given multiple candidate AMRs, choose best one
— Need a way to score each choice
— Want pairwise digraph similarity score

* Typical metric used for AMRs is SMATCH
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SMATCH Score

e Semantic Match score
— Find best matching of nodes

— Score based on node and edge labels

— F1 score
* Node label
* For each edge: edge type and end points
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Basic Implementation Pseudocode

Algorithm 1 Basic SMATCH pseudocode
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for edges in a do

20: procedure NODEMAPPING(A,B)
21: allAlignments ¢ emply

. » » 1 I/ A .
: procedure GETSMATCH(A,B) 2. Select node, in &
mazF1 + 0 23: for nodeg in b do
for mapping in nodeMapping(a,b) do 24: newAlignments < align node, to node
correct + 0 25: newA ¢ a — nodeqg
for alignedPair in mapping do 26: newl ¢ b — nodey,
if labels match then 27 newAlignments ¢ nodeMapping(newA, newB)
' - 28: ypend newAlignments to allAlignments
correct + correct + 1 P ; g g
29: return allAlignments

replace end-points with aligned nodes from b
if new edge exists in b then
correct < correct + 1

precisionDenominator < number of triples in b
recall Denominator < number of triples in a
precision « correct/precisionDenominator
recall < correct/recall Denominator
f1 « (recall + precision) /2
if f1 > maxzF'1 then

maxF1 + f1

return mazxF'l
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Basic Implementation Pseudocode

Algorithm 1 Basic SMATCH pseudocode

-~

00 X O OX

10:

12
13:
14:
15:
16:
17:
18:
19:

: procedure GETSMATCH(A,B)
maxF'1l + 0
for mapping in nodeMapping(a,b) do
correct + 0
for alignedPair in mapping do
if labels match then
correct + correct + 1
for edges in a do
replace end-points with aligned nodes from b
if new edge exists in b then
correct < correct + 1
precisionDenominator < number of triples in b
recall Denominator < number of triples in a
precision « correct/precisionDenominator
recall < correct/recall Denominator
f1 « (recall + precision) /2
if f1 > maxzF'1 then
maxF1 + f1

return mazxF'l

allAlignments ¢ emply
Select node, in a

for nodeg in b do
newAlignments < align node, to nodey,
newA ¢ a — nodeg
newlB - b~ nodey
newAlignments ¢ nodeMapping(newA, newB)
append newAlignments to allAlignments

return allAlignments

Find all ways to
match nodes in A
with nodes in B
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Basic Implementation Pseudocode

Algorithm 1 Basic SMATCH pseudocode 20: procedure NODEMAPPING(A,B)
. ] 21: allAlignments ¢ emply
1: procedure GETSMATCH(A,B) 2. Select node, in &
2 mazF1 + 0 23: for nodeg in b do
3: for mapping in nodeMapping(a.b) do 24: newAlignments < align node, to node
4 correct + ( 25: newA ¢ a —~ nodeg

for alignedPair in mapping do 26: newl ¢ b — nodey,
if labels match then 27 newAlignments ¢ nodeMapping(newA, newB)

5

6 . .

s corvert «porrect el 28: append newAlignments to allAlignments
8

9

5 29: return allAlignments
for edges in a do e

replace end-points with aligned nodes from b

102 if new edge exists in b tl '
- iIf new edge exists in b then Check If nOde

correct +— correct + 1

12: precisionDenominator < number of triples in b
labels match and

recall Denominator < number of triples in a

14: precision « correct/precisionDenominator if e d e I a b e I S
15: recall < correct/recall Denominator g

16: f1 « (recall + precision) /2

17: if f1 > maxzF'1 then matCh

18: maxzF'1 + f1 9
19: return maxzF'l '
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Complexity

 Most direct way (previous slide) has
complexity ~O(N!/(N-M)!* | M+E|)
— N = number of nodes in larger graph

— M = number of nodes in smaller graph
— E = number of edges in smaller graph

* |n practice, heuristics are used
— Faster, but no optimality guarantee
— | want to avoid heuristics
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Improvements

e Combine mapping and scoring
— Score nodes as they are matched
— Avoids recomputing

e Score likely alignment first, use as cutoff
— Number incorrect is cutoff threshold
— (Can avoid unnecessary computation

e Send subgraphs to worker processes for
parallelism
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New Complexity

* Previously YO(N!/(N-M)!* | M+E|)

* Now ~O(N!/(N-M)!*|E]|) in worst case,
~O(N!/(N-M)!) in average case

e Worst case complexity not improved greatly

e Better in practice using cutoff to eliminate
parts of search space

e Effectiveness increases as SMATCH increases
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Implementation

 Implemented in Python 2.7

e Uses NetworkX

* Uses Multiprocessing library

* ~500 lines of code (separate functions for
basic vs enhanced vs parallel, so some
repetition)
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Timing Results

SMATCH Time with 4 node AMR
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Timing Results

SMATCH Time with a=b
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Generating Candidate AMRs

e |n practice we use SMATCH on AMRs that are
similar

* |mitate this by randomly rewiring edges,
relabeling edges, and relabeling nodes
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Timing Results

SMATCH Time 10 nodes
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Timing Results

SMATCH Time 10 nodes
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Conclusions

 While the worst case complexity remains bad,
typical use can be made much better

 Prune search space by not pursuing bad
subgraphs

e Parallelize subgraph search

* Most effective when candidate is close to
correct (high SMATCH)

The College of Engineering

ar the Untversity of Notre Dame




