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Abstract Meaning Representation 
(AMR)
● AMRs are a semantic formalism 

which models sentences
○ Nodes represent concepts
○ Edges represent relations 

between concepts
■ Semantic roles
■ ARG0 = Agent
■ ARG1 = Patient
■ Example AMR for sentence:

“John wants Mary to 
believe him.”
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Properties of AMRS as Graphs
● Some properties of AMRs

○ Directed Acyclic Graphs (DAGs)
○ Single rooted (focus of sentence)
○ Each AMR represents a sentence
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Dataset

• Set of 10,312 AMRs from various news 
sources

• Average number of nodes is: 17.1
• Average number of edges is: 17.1
• More than half are trees
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Kernel: Graph Similarity Scoring

• Use some AMRs for training
– Given multiple candidate AMRs, choose best one
– Need a way to score each choice
– Want pairwise digraph similarity score

• Typical metric used for AMRs is SMATCH
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SMATCH Score

• Semantic Match score
– Find best matching of nodes
– Score based on node and edge labels
– F1 score

• Node label
• For each edge: edge type and end points
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Basic Implementation Pseudocode
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Basic Implementation Pseudocode
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Find all ways to 
match nodes in A 
with nodes in B



Basic Implementation Pseudocode
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Check if node 
labels match and 
if edge labels 
match



Complexity

• Most direct way (previous slide) has 
complexity ~O(N!/(N-M)!*|M+E|)
– N = number of nodes in larger graph
– M = number of nodes in smaller graph
– E = number of edges in smaller graph

• In practice, heuristics are used
– Faster, but no optimality guarantee
– I want to avoid heuristics
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Improvements

• Combine mapping and scoring
– Score nodes as they are matched
– Avoids recomputing

• Score likely alignment first, use as cutoff
– Number incorrect is cutoff threshold
– Can avoid unnecessary computation

• Send subgraphs to worker processes for 
parallelism
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New Complexity

• Previously ~O(N!/(N-M)!*|M+E|)
• Now ~O(N!/(N-M)!*|E|) in worst case, 

~O(N!/(N-M)!) in average case
• Worst case complexity not improved greatly
• Better in practice using cutoff to eliminate 

parts of search space
• Effectiveness increases as SMATCH increases
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Implementation

• Implemented in Python 2.7
• Uses NetworkX
• Uses Multiprocessing library
• ~500 lines of code (separate functions for 

basic vs enhanced vs parallel, so some 
repetition)
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Timing Results
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Timing Results
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Generating Candidate AMRs

• In practice we use SMATCH on AMRs that are 
similar

• Imitate this by randomly rewiring edges, 
relabeling edges, and relabeling nodes
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Timing Results
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Timing Results
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Conclusions

• While the worst case complexity remains bad, 
typical use can be made much better

• Prune search space by not pursuing bad 
subgraphs

• Parallelize subgraph search
• Most effective when candidate is close to 

correct (high SMATCH)
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