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Extensive Form Game

Strategies are composed of decisions at tree nodes.
Example:
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Assumptions:

e All players are rational.
e All players know the other players’ preferences.

e Everything a player cares about has been encapsulated in the
preference relation.

® These facts are “Common Knowledge.”
o Basically means “l know that you know that | know...”
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Do Dilemmas Occur Natur

Vg \f e Big Trees
f y A f e Random Preferences
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Kenel MinitMax with D)

Def mini_max(node)
If node.is_leaf():
Return node.consequence
result = null
For child In node.children
child_consequence = mini_max(child)
If result Is null Or node.player.prefers(child_consequence, result)
result = child_consequence
Return result
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Complexity

Number of players: p
Number of vertices: v
Number of edges: e =v - 1 because its a tree.

MiniMax with DFS: O(p(v + e)) = O(pv)
Game Tree Generation: O(pv)
Checking Optimality of Result: O(pv)
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~ Original Implementatior

® DFS: Boost Graph Library (C++)
o Overload “DFS Visitor” class
® Game Generation
o Custom C++ code
o Boost graph format
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~ Enhanced Implementati

® Custom Graph Format (C++)

o Adjacency List Implementation
® Custom Tree Traversal Code
e Parallelization done with pthreads
e ~550 Lines of Code
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" Enhanced Implementatic

Basic idea:

e Available worker-thread pool

Workers do sub-traversals

Any worker can assign sub-traversal to other workers
When a worker finishes:

o Wake up the thread waiting on results

o Re-enter the pool
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’ ‘Experiﬁment' tup

Run 100 trials for each parametrization:

e Number of players: 4
e Vary number of game tree nodes from 10 to 10,000,000
e Balanced Trees (degree of 8)
® “Chain” Trees
o Every decision node has one stop-edge leading to a final
outcome and one continue-edge.
o Example:

IR
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Results

Frequency of Dilemmas in "Chain" Trees
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Results

Frequency of Dilemmas in Balanced Trees (deg = 8)
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"Chain" Trees -- Traversal Scaling

200000 == 16 Threads
== 8 Threads
> 4 Threads
= 150000
E == 2 Threads
L)
0 == 1 Thread
l_
o 100000
o
IS}
L
(]
E 50000
[ =y
-]
&
0

2000000 4000000 6000000 8000000 10000000

Num Nodes

20



"Chain" Trees -- Traversal Scaling

Runtime For 100 Trials (in ms)
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Results

Balanced Trees -- Traversal Scaling
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Runtime For 100 Trials (in ms)

Balanced Trees -- Traversal Scaling
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® Boost C++ Libraries
o https://www.boost.org/
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