Slmulatlng
Dllemmas ~'

El

-
- ¢, o 0 “
*
b ‘ . . .

Players/Agents i=1...n Consequence setC ={c,, ..., C_}

¥ X

Preferences x, Strategy SetS=S.x ... x S_

f:S—C

@B

go 0 e

DR

Extensive Form Game

Strategies are composed of decisions at tree nodes.
Example:
Si= {A} i
S
O
S.=1{C, F} A E
f f A
N YN

e SV s é
. YO

Assumptions:

e All players are rational.
e All players know the other players’ preferences.

e Everything a player cares about has been encapsulated in the
preference relation.

® These facts are “Common Knowledge.”
o Basically means “l know that you know that | know...”

o) S .
i ¢’,. A
N

Dilemmas

- I

P1

NV

P2

NV
NV

";-.‘T‘h -

Dilemmas

/

Inevitable Result

";-.‘T‘h -

Dilemmas

/

Inevitable Result

Do Dilemmas Occur Natur

Vg \f e Big Trees
f y A f e Random Preferences

11

Kenel MinitMax with D)

Def mini_max(node)
If node.is_leaf():
Return node.consequence
result = null
For child In node.children
child_consequence = mini_max(child)
If result Is null Or node.player.prefers(child_consequence, result)
result = child_consequence
Return result

12

%

Complexity

Number of players: p
Number of vertices: v
Number of edges: e =v - 1 because its a tree.

MiniMax with DFS: O(p(v + e)) = O(pv)
Game Tree Generation: O(pv)
Checking Optimality of Result: O(pv)

13

~ Original Implementatior

® DFS: Boost Graph Library (C++)
o Overload “DFS Visitor” class
® Game Generation
o Custom C++ code
o Boost graph format

14

‘\. 2 .

~ Enhanced Implementati

® Custom Graph Format (C++)

o Adjacency List Implementation
® Custom Tree Traversal Code
e Parallelization done with pthreads
e ~550 Lines of Code

15

.\.. 2 F

" Enhanced Implementatic

Basic idea:

e Available worker-thread pool

Workers do sub-traversals

Any worker can assign sub-traversal to other workers
When a worker finishes:

o Wake up the thread waiting on results

o Re-enter the pool

16

o

%t

S
v

’ ‘Experiﬁment' tup

Run 100 trials for each parametrization:

e Number of players: 4
e Vary number of game tree nodes from 10 to 10,000,000
e Balanced Trees (degree of 8)
® “Chain” Trees
o Every decision node has one stop-edge leading to a final
outcome and one continue-edge.
o Example:

IR

17

Results

Frequency of Dilemmas in "Chain" Trees

1

0.75

0.5

Fraction Dilemma

0.25

10 100 1000 10000 100000 1000000

Num Nodes 18

Results

Frequency of Dilemmas in Balanced Trees (deg = 8)

0.5
0.4
0.3

0.2

Fraction Dilemma

0.1

10 100 1000 10000 100000 1000000

Num Nodes

19

"Chain" Trees -- Traversal Scaling

200000 == 16 Threads
== 8 Threads
> 4 Threads
= 150000
E == 2 Threads
L)
0 == 1 Thread
l_
o 100000
o
IS}
L
(]
E 50000
[=y
-]
&
0

2000000 4000000 6000000 8000000 10000000

Num Nodes

20

"Chain" Trees -- Traversal Scaling

Runtime For 100 Trials (in ms)

Num Nodes

16 Threads
8 Threads
4 Threads
2 Threads
1 Thread

Boost-Based

Y4

Results

Balanced Trees -- Traversal Scaling
150000 == 16 Threads

== 8 Threads

> 4 Threads

£

= 100000 == ? Threads

L)

0 == 1 Thread

l_

o

o

k3

= 50000

£

c

=}

o

0
2000000 4000000 6000000 8000000 710000000
Num Nodes 27

Runtime For 100 Trials (in ms)

Balanced Trees -- Traversal Scaling

1000000
100000
10000

1000 /

100

10

10 100 1000 10000

Num Nodes

16 Threads
8 Threads
4 Threads
2 Threads
1 Thread

Boost-Based

® Boost C++ Libraries
o https://www.boost.org/

24

